精英家教网 > 高中数学 > 题目详情
是不同的直线,是不同的平面,有以下四个命题:
     ②
   ④
其中,真命题是(   )
A.①④B.②③C.①③D.②④
C.

试题分析:对于①利用平面与平面平行的性质定理可证,则,正确;对于②面⊥面∥面,此时∥面,不正确;对应③因为,所以内有一直线与平行,而,根据面面垂直的判定定理可知,故正确;对应④有可能在平面内,故不正确. 故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,分别为,中点。
(1)求异面直线所成角的大小;
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥中,分别是中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面 的中点,作于点
(1)求证:平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2012•广东)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离              

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面α和共面的直线m、n,下列命题正确的是(   )
A.若m、n与α所成的角相等,则m∥n
B.若m∥α,n∥α,则m∥n
C.若m⊥α,m⊥n,则n∥α
D.若mα,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若A,B,当取最小值时,的值等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案