精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.

分析 (1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=$\frac{1}{2}BC$,再由已知得AM∥BC,且AM=$\frac{1}{2}$BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;
法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;
(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.

解答 (1)证明:法一、如图,取PB中点G,连接AG,NG,
∵N为PC的中点,
∴NG∥BC,且NG=$\frac{1}{2}BC$,
又AM=$\frac{2}{3}AD=2$,BC=4,且AD∥BC,
∴AM∥BC,且AM=$\frac{1}{2}$BC,
则NG∥AM,且NG=AM,
∴四边形AMNG为平行四边形,则NM∥AG,
∵AG?平面PAB,NM?平面PAB,
∴MN∥平面PAB;
法二、
在△PAC中,过N作NE⊥AC,垂足为E,连接ME,
在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=$\frac{{4}^{2}+{3}^{2}-{3}^{2}}{2×4×3}=\frac{2}{3}$,
∵AD∥BC,
∴cos$∠EAM=\frac{2}{3}$,则sin∠EAM=$\frac{\sqrt{5}}{3}$,
在△EAM中,
∵AM=$\frac{2}{3}AD=2$,AE=$\frac{1}{2}AC=\frac{3}{2}$,
由余弦定理得:EM=$\sqrt{A{E}^{2}+A{M}^{2}-2AE•AM•cos∠EAM}$=$\sqrt{\frac{9}{4}+4-2×\frac{3}{2}×2×\frac{2}{3}}=\frac{3}{2}$,
∴cos∠AEM=$\frac{(\frac{3}{2})^{2}+(\frac{3}{2})^{2}-4}{2×\frac{3}{2}×\frac{3}{2}}=\frac{1}{9}$,
而在△ABC中,cos∠BAC=$\frac{{3}^{2}+{3}^{2}-{4}^{2}}{2×3×3}=\frac{1}{9}$,
∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,
∴AB∥EM,则EM∥平面PAB.
由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,
∴NE∥PA,则NE∥平面PAB.
∵NE∩EM=E,
∴平面NEM∥平面PAB,则MN∥平面PAB;
(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=$\frac{2}{3}$,得CM2=AC2+AM2-2AC•AM•cos∠MAC=$9+4-2×3×2×\frac{2}{3}=5$.
∴AM2+MC2=AC2,则AM⊥MC,
∵PA⊥底面ABCD,PA?平面PAD,
∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,
∴CM⊥平面PAD,则平面PNM⊥平面PAD.
在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.
在Rt△PAC中,由N是PC的中点,得AN=$\frac{1}{2}PC$=$\frac{1}{2}\sqrt{P{A}^{2}+P{C}^{2}}=\frac{5}{2}$,
在Rt△PAM中,由PA•AM=PM•AF,得AF=$\frac{PA•AM}{PM}=\frac{4×2}{\sqrt{{4}^{2}+{2}^{2}}}=\frac{4\sqrt{5}}{5}$,
∴sin$∠ANF=\frac{AF}{AN}=\frac{\frac{4\sqrt{5}}{5}}{\frac{5}{2}}=\frac{8\sqrt{5}}{25}$.
∴直线AN与平面PMN所成角的正弦值为$\frac{8\sqrt{5}}{25}$.

点评 本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知θ的终边过点P(4a,-3a),且sinθ=$\frac{3}{5}$,则tanθ=$-\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由函数y=cosx,x∈[-$\frac{π}{2}$,$\frac{3π}{2}$]的图象得到函数y=sinx,x∈[0,2π]的图象,需向右平移(  )
A.-$\frac{π}{2}$个单位长度B.-π个单位长度C.π个单位长度D.$\frac{π}{2}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N*
(Ⅰ)若2a2,a3,a2+2成等差数列,求an的通项公式;
(Ⅱ)设双曲线x2-$\frac{{y}^{2}}{{a}_{n}^{2}}$=1的离心率为en,且e2=$\frac{5}{3}$,证明:e1+e2+???+en>$\frac{{4}^{n}-{3}^{n}}{{3}^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是(  )
A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y+1≥0}\\{λx-y-λ≤0}\end{array}\right.$(λ>1)在平面上表示的区域为D
(1)当λ=2时,在坐标平面内画出区域D,并求区域为D的外接圆的标准方程;
(2)设区域为D的面积为S,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了得到函数y=$\sqrt{3}$sin2x-cos2x的图象,只需把函数y=4sinxcosx的图象向右平移$\frac{π}{12}$个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知无穷等比数列{an}的公比为q,前n项和为Sn,且$\underset{lim}{n→∞}{S}_{n}$=S,下列条件中,使得2Sn<S(n∈N*)恒成立的是(  )
A.a1>0,0.6<q<0.7B.a1<0,-0.7<q<-0.6
C.a1>0,0.7<q<0.8D.a1<0,-0.8<q<-0.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知随机变量X~N(1,σ2)(σ>0),则方程x2-2x+X=0没有实根的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案