精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数是奇函数:
(1)求实数的值; 
(2)证明在区间上的单调递减
(3)已知且不等式对任意的恒成立,求实数的取值范围.
(1);(2)见解析;(3).

试题分析:(Ⅰ)先根据f(1)=f(4)求出b的值;再结合f(x)+f(-x)=0对x≠0恒成立求出a的值即可;
(Ⅱ)直接按照单调性的证明过程来证即可;
(Ⅲ)先结合第二问的结论知道函数f(x)在(1,+∞)上递减,进而得到函数的不等式,最后把两个成立的范围相结合即可求出结论.
(1)由定义易得:
(2)设
所以上的单调递减。
(3)已知且不等式对任意的恒成立,求实数的取值范围.
为奇函数得:
因为,且在区间上的单调递减,
任意的恒成立,故.
点评:解决第一问的关键在于利用奇函数的定义得到f(x)+f(-x)=0对x≠0恒成立求出a的值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数
(1)若试判断函数零点个数;
(2)若对任意的,且>0),试证明:
成立。
(3)是否存在,使同时满足以下条件:①对任意,且②对任意的,都有?若存在,求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设定义在上的函数是最小正周期为的偶函数,当时,,且在上单调递减,在上单调递增,则函数上的零点个数为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数满足,且,则下列等式不成立的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知函数,
(1)若,且的取值范围
(2)当时,恒成立,且的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f (x)=∣4x-x2∣-a的零点的个数为3,则a=       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果对数函数上是减函数,则的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数),正项等比数列满足,则
A.99B.C.D.

查看答案和解析>>

同步练习册答案