精英家教网 > 高中数学 > 题目详情
(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中分别为甲、乙摸到的球的编号。
(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;
(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)
(3)  如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.

1)共有16个等可能事件列举于下(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)
     (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)
2)这种游戏公平
3)猜5获奖的可能性大
解:(1)共有16个等可能事件列举于下(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).………2分
设甲胜且两数字之和为5为事件A,则事件A包含(1,4),(2,3) ,(3,2), (4,1)共4个基本事件………4分  
∴P(A)= ………4分
(2)这种游戏公平。
设甲胜为事件B乙胜为事件C,则甲胜包含(1,2),(1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)共8个基本事件,∴甲胜的概率P(B)= ………6分
从而乙胜的概率P(C)="1-" P(B)=  ,
∴P(B)= P(C)故这种游戏公平。………8分
(2)记“所摸出的两球号码之和为”为事件=2,3,4,5,6,7,8)………10分
由(1)中可知事件A2的基本结果为1种,事件A3的基本结果为2种,事件A4的基本结果为3种,事件A5的基本结果为4种,事件A6的基本结果为3种,A7的基本结果为2种,A8的基本结果为1种,,所以摸出的两球号码之和为5的概率最大. 
答:猜5获奖的可能性大. ………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为应对金融危机,刺激消费,某市给市民发放旅游消费卷,由抽样调查预计老、中、青三类市民持有这种消费卷到某旅游景点消费额及其概率如下表:

200元
300元
400元
500元
老年
0.4
0.3
0.2
0.1
中年
0.3
0.4
0.2
0.1
青年
0.3
0.3
0.2
0.2
某天恰好有持有这种消费卷的老年人、中年人、青年人各一人到该旅游景点,
(Ⅰ)求这三人消费总额大于1300元的概率;
(Ⅱ)设这三人中消费额大于300元的人数为,求的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连续掷两次骰子分别得到的点数为m,n,则点P(m,n)在直线左下方的概率为                          (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
环数
7
8
9
10
命中次数
2
7
8
3
   (Ⅰ)求此运动员射击的环数的平均数;
(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为(mn).求“”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某设区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖。
(I)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒总抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求 的分布列及

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.现知某人在以前投掷1000次的试验中,有500次入红袋,250次入蓝袋,其余不能入袋
(1)求该人在4次投掷中恰有三次投入红袋的概率;
(2) 求该人两次投掷后得分的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐.已知只有5发子弹备用,且首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是,每次命中与否互相独立.
(1) 求油罐被引爆的概率.
(2) 如果引爆或子弹打光则停止射击,设射击次数为ξ,求ξ的分布列及ξ的数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、生产某一配件需经过三道工序,设第一、二、三道工序的次品率分别为,且各道工序互不影响,则加工出来的配件的次品率为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在圆周上有10个等分,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择了3个点,刚好构成直角三角形的概率是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案