4£®´Ó¼×¡¢ÒÒÁ½ÃûÔ˶¯Ô±µÄÈô¸É´ÎѵÁ·³É¼¨ÖÐËæ»ú³éÈ¡6´Î£¬·Ö±ðΪ
¼×£º7.7£¬7.8£¬8.6£¬8.7£¬9.3£¬9.5
ÒÒ£º7.6£¬8.2£¬8.5£¬8.6£¬9.2£¬9.5
£¨1£©¸ù¾ÝÒÔÉϵľ¥Ò¶Í¼£¬¶Ô¼×¡¢ÒÒÔ˶¯Ô±µÄ³É¼¨×÷±È½Ï£¬Ð´³öÁ½¸öͳ¼Æ½áÂÛ£»
£¨2£©´Ó¼×¡¢ÒÒÔ˶¯Ô±6´Î³É¼¨Öи÷Ëæ»ú³éÈ¡1´Î³É¼¨£¬Çó¼×¡¢ÒÒÔ˶¯Ô±µÄ³É¼¨ÖÁÉÙÓÐÒ»¸ö¸ßÓÚ8.5·ÖµÄ¸ÅÂÊ£®
£¨3£©¾­¹ý¶Ô¼×¡¢ÒÒÔ˶¯Ô±Èô¸É´Î³É¼¨½øÐÐͳ¼Æ£¬·¢ÏÖ¼×Ô˶¯Ô±³É¼¨¾ùÔÈ·Ö²¼ÔÚ[7£¬10]Ö®¼ä£¬ÒÒÔ˶¯Ô±³É¼¨¾ùÔÈ·Ö²¼ÔÚ[7.5£¬9.5]Ö®¼ä£¬Ïּס¢ÒÒ±ÈÈüÒ»´Î£¬Çó¼×¡¢Òҳɼ¨Ö®²îµÄ¾ø¶ÔֵСÓÚ0.5·ÖµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©¸ù¾Ý¾¥Ò¶Í¼£¬ÎÒÃǽáºÏ¼×ÒÒÁ½ÃûÔ˶¯Ô±µÄ³É¼¨£¬ÎÒÃÇ¿ÉÒÔÇó³öÁ½¸öÈËµÄÆ½¾ù³É¼¨£¬´Ó¶ø±È½Ï³öÁ½¸öÈËµÄÆ½¾ùˮƽ£»Ò²¿É¼ÆËã³öÁ½¸öÈ˵ķ½²î£¨»ò±ê×¼²î£©£¬´Ó¶ø±È½Ï³öÁ½¸öÈË·¢»ÓµÄÎȶ¨ÐÔ£»
£¨2£©Éè¼×Òҳɼ¨ÖÁÉÙÓÐÒ»¸ö¸ßÓÚ8.5·ÖΪʼþA£¬ÎÒÃÇÏȼÆËã³ö´Ó¼×¡¢ÒÒÔ˶¯Ô±Áù´Î³É¼¨Öи÷Ëæ»ú³éÈ¡1´Î³É¼¨µÄËùÓгéÈ¡·½·¨×ÜÊý£¬ºÍÂú×ã¼×¡¢ÒÒÔ˶¯Ô±µÄ³É¼¨ÖÁÉÙÓÐÒ»¸ö¸ßÓÚ8.5·ÖµÄ³éÈ¡·½·¨£¬´úÈë¹Åµä¸ÅÐ͹«Ê½¼´¿ÉÇó³ö´ð°¸£®
£¨3£©¸ù¾ÝÒÑÖªÖм×Ô˶¯Ô±³É¼¨¾ùÔÈ·Ö²¼ÔÚ[7.5£¬9.5]Ö®¼ä£¬ÒÒÔ˶¯Ô±³É¼¨¾ùÔÈ·Ö²¼ÔÚ[7.0£¬10]Ö®¼ä£¬ÎÒÃÇ¿ÉÒÔÇó³öËüËù±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ý£¬ÔÙÇó³ö¼×¡¢Òҳɼ¨Ö®²îµÄ¾ø¶ÔֵСÓÚ0.5·Ö¶ÔÓ¦µÄÆ½ÃæÇøÓòµÄÃæ»ý£¬´úÈ뼸ºÎ¸ÅÐ͹«Ê½£¬¼´¿ÉµÃµ½´ð°¸£®

½â´ð ½â£¨1£©ÓÉÑù±¾Êý¾Ý¿ÉµÃ£º
$\overline{{x}_{¼×}}$=$\frac{1}{6}$£¨7.7+7.8+8.6+8.7+9.3+9.5£©=8.6£¬
$\overline{{x}_{ÒÒ}}$=$\frac{1}{6}$£¨7.6+8.2+8.5+8.6+9.2+9.5£©=8.6£¬¿ÉÖª¼×ÒÒÔ˶¯Ô±Æ½¾ùˮƽÏàͬ£®
${s}_{¼×}^{2}$=$\frac{1}{6}$[£¨7.7-8.6£©2+£¨7.8-8.6£©2+£¨8.6£®-8.6£©2+£¨8.7-8.6£©2+£¨9.3-8.6£©2+£¨9.5-8.6£©2]=0.46£¬
${s}_{ÒÒ}^{2}$=$\frac{1}{6}$[£¨7.6-8.6£©2+£¨8.2-8.6£©2+£¨8.5-8.6£©2+£¨8.6-8.6£©2+£¨9.2-8.6£©2+£¨9.5-8.6£©2]=0.39£¬
¿ÉÖªÒÒÔ˶¯Ô±µÄ·½²îС£¬ÔòÒÒÔ˶¯Ô±·¢»Ó½Ï¼×Ô˶¯Ô±·¢»ÓÎȶ¨£®
£¨2£©Éè¼×ÒÒÔ˶¯Ô±³É¼¨ÖÁÉÙÓÐÒ»¸ö¸ßÓÚ8ΪʼþA
ÔòP£¨A£©=1-$\frac{2}{6}¡Á\frac{3}{6}=\frac{5}{6}$£®
£¨3£©Éè¼×Ô˶¯Ô±µÄ³É¼¨Îªy£¬y¡Ê[7£¬10]£¬
ÒÒÔ˶¯Ô±µÄ³É¼¨Îªx£¬x¡Ê[7.5£¬9.5]ÇÒ|x-y|£¼0.5£¬
Éè¼×ÒÒÔ˶¯Ô±³É¼¨Ö®²îСÓÚ0.5·ÖΪʼþB£¬
Ôò$\left\{{\begin{array}{l}{7.5¡Üx¡Ü9.5}\\{7¡Üy¡Ü10}\\{|{x-y}|¡Ü0.5}\end{array}}\right.$
ÔòʼþB°üº¬µÄÇøÓòΪÒõÓ°ÇøÓò£¬ÔòP£¨B£©=1-$\frac{2+2}{3¡Á2}$=$\frac{1}{3}$£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǹŵä¸ÅÐͼ°Æä¸ÅÂʼÆË㹫ʽ£¬¼¸ºÎ¸ÅÐͼ°Æä¸ÅÂʼÆË㹫ʽ£¬¾¥Ò¶Í¼£¬ÊÇͳ¼ÆºÍ¸ÅÂÊ֪ʶµÄ×ۺϿ¼²é£¬ÊìÁ·ÕÆÎչŵä¸ÅÐͼ°¼¸ºÎ¸ÅÐÍÇó½â¸ÅÂʵķ½·¨ºÍ²½ÖèÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}sinx£¬sinx¡Ýcosx\\ cosx£¬sinx£¼cosx\end{array}$£¬ÔòÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©ÊÇÆæº¯ÊýB£®f£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]ÉϵÝÔöC£®f£¨x£©ÊÇÖÜÆÚº¯ÊýD£®f£¨x£©µÄÖµÓòΪ[-1£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=3£¬|$\overrightarrow{b}$|=2£¬$\overrightarrow{a}$•$\overrightarrow{b}$=4£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|=£¨¡¡¡¡£©
A£®-$\sqrt{3}$B£®$\sqrt{5}$C£®3D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¬ÆäÖЦأ¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£¬cos$\frac{¦Ð}{4}$•cos¦Õ-sin$\frac{3¦Ð}{4}$•sin¦Õ=0ÇÒº¯Êýf£¨x£©µÄͼÏóµÄÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëµÈÓÚ$\frac{¦Ð}{3}$£¬º¯Êýf£¨x£©µÄͼÏóÏò×óÆ½ÒÆm¸öµ¥Î»Ëù¶ÔÓ¦µÄº¯ÊýÊÇżº¯Êý£®Ôò×îСÕýʵÊýmµÄֵΪ$\frac{¦Ð}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨¢ñ£©¹ØÓÚxµÄ²»µÈʽ£¨m+3£©x2-£¨m+3£©x-1£¼0µÄ½â¼¯ÎªR£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨¢ò£© ¹ØÓÚxµÄ²»µÈʽx2+ax+4£¾0µÄ½â¼¯Îª{x|x¡Ùb}£¬Çóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª¦Ø£¾0£¬º¯Êýf£¨x£©=2sin¦ØxÔÚ[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{4}$]ÉϵÝÔö£¬Ôò¦ØµÄ·¶Î§Îª$£¨{0£¬\frac{3}{2}}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªa+2b+3c=1£¬a£¾0£¬b£¾0£¬c£¾0£¬Çóc2+ac+bc+abµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}£¬x¡Ê[0£¬1]}\\{\frac{1}{x}£¬x¡Ê£¨1£¬e£©}\end{array}\right.$£¬Ôò${¡Ò}_{0}^{e}$f£¨x£©dxµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{4}{3}$C£®$\frac{2}{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Èôa£¬b£¬c³ÉµÈ±ÈÊýÁУ¬mÊÇa£¬bµÄµÈ²îÖÐÏnÊÇb£¬cµÄµÈ²îÖÐÏÔò$\frac{a}{m}+\frac{c}{n}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸