精英家教网 > 高中数学 > 题目详情

已知a>b>0,求a+的最小值.

答案:
解析:

  解:a+[(2a-b)+b+]≥·3=3.

  当且仅当2a-b=b=,即a=b=2时等号成立.

  ∴当a=b=2时,a+有最小值3.

  分析:由于a+中有两个变量,因此不能应用来函数的最小值的方法,可考虑用不等式求最值的方法.而a+是两个数的和的形式且它们的积不为定值,因此应设法把它变成乘积为定值的三个数和的形式.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>b>0,求a2+
16b(a-b)
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求
DA
DB
的值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(M,N都不同于点E),且EM⊥EN,求证:直线MN与x轴的交点是一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)已知F1,F2分别是椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C1:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB相交于点D,与椭圆C1相交于点E,F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区一模)已知函数f(x)=ax2+bx+c(a,b,c为实数,a≠0),定义域D:[-1,1]
(1)当a=1,b=-1时,若函数f(x)在定义域内恒小于零,求c的取值范围;
(2)当a=1,常数b<0时,若函数f(x)在定义域内恒不为零,求c的取值范围;
(3)当b>2a>0时,在D上是否存在x,使得|f(x)|>b成立?(要求写出推理过程)

查看答案和解析>>

同步练习册答案