精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x),
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数且当0≤x≤1时,f(x)=$\frac{1}{2}$x,求使f(x)=-$\frac{1}{2}$在[0,2014]上的所有x的个数.

分析 (1)由f(x+2)=-f(x)可推知f(x+4)=f(x)得证.
(2)依题意求出f(x)在[-1,3)上的解析式,进而求出f(x)=-$\frac{1}{2}$时x的值.再根据函数的周期性求出在[0,2014]上的所有x的个数.

解答 解:(1)证明:∵f(x+2)=-f(x)
∴f(x+4)=f(x+2+2)=-f(x+2)=f(x)
∴f(x)是以4为周期的函数.
(2)当0≤x≤1时,f(x)=$\frac{1}{2}$x,
设-1≤x≤0,则0≤-x≤1,
∴f(-x)=(-x)=-x.
∵f(x)是奇函数,
∴f(-x)=-f(x),
∴-f(x)=-$\frac{1}{2}$x,即f(x)=$\frac{1}{2}$x.
故f(x)=$\frac{1}{2}$x(-1≤x≤1)
又设1<x<3,则-1<x-2<1,
∴f(x-2)=$\frac{1}{2}$(x-2),
又∵f(x-2)=-f(2-x)=-f[(-x)+2]=-[-f(-x)]=-f(x),
∴-f(x)=$\frac{1}{2}$(x-2),∴f(x)=-$\frac{1}{2}$(x-2)(1<x<3).
∴f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x,-1≤x≤1}\\{-\frac{1}{2}(x-2),1<x<3}\end{array}\right.$,
由f(x)=-$\frac{1}{2}$,解得x=-1.
∵f(x)是以4为周期的周期函数.故f(x)=-$\frac{1}{2}$的所有x=4n-1(n∈Z).令0≤4n-1≤2014,则$\frac{1}{4}$≤n≤503,
又∵n∈Z,∴1≤n≤503(n∈Z),
∴在[0,2014]上共有503个x使f(x)=-$\frac{1}{2}$.

点评 本题主要考查了函数的周期性.在解题的时候,要注意函数在不同区间上不同的解析式,这是容易出错的地方.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{x-5,x>6}\\{f(x+2),x≤6}\end{array}\right.$,则f(5)=(  )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2-2ax+2在区间(-∞,1]上递减,则a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.观察下列散点图,其中两个变量的相关关系判断正确的是(  )
A.a为正相关,b为负相关,c为不相关B.a为负相关,b为不相关,c为正相关
C.a为负相关,b为正相关,c为不相关D.a为正相关,b为不相关,c为负相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2-ax的图象在点A(1,f(1))处的切线l与直线x+3y+2=0垂直,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2017的值为(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2017}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)若双曲线方程为$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1,求此双曲线的离心率和渐进线方程;
(Ⅱ)抛物线的顶点在原点,准线是y=8,求抛物线的标准方程和焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=sin(2x+φ)(φ∈[0,π]),其导数f'(x)的图象向右平移$\frac{π}{3}$个单位后关于原点对称,
则φ=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示的圆锥的三视图是(  )
A.主视图和左视图是三角形,俯视图是圆
B.主视图和左视图是三角形,俯视图是圆和圆心
C.主视图是圆和圆心,俯视图和左视图是三角形
D.主视图和俯视图是三角形,左视图是圆和圆心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3+ax2+bx在x=-$\frac{2}{3}$与x=1处都取得极值.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[-2,3]的最大值与最小值.

查看答案和解析>>

同步练习册答案