分析 (1)根据所给的函数的解析式,对函数求导,使得导函数等于0,得到关于a,b的关系式,解方程组即可,写出函数的解析式.
(2)对函数求导,写出函数的导函数等于0的x的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到结果.
解答 解:(1)f(x)=x3+ax2+bx,f′(x)=3x2+2ax+b,
由f′(-$\frac{2}{3}$)=$\frac{12}{9}$-$\frac{4}{3}$a+b=0,f′(1)=3+2a+b=0,
得a=-$\frac{1}{2}$,b=-2,
经检验,a=$\frac{1}{2}$,b=-2符合题意,
所以,所求的函数解析式为f(x)=x3-$\frac{1}{2}$x2-2x;
(2)由(1)得f′(x)=3x2-x-2=(3x+2)(x-1),
列表
| x | (-2,-$\frac{2}{3}$) | -$\frac{2}{3}$ | (-$\frac{2}{3}$,1) | 1 | (1,3) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
点评 本题考查函数的最值问题,解题的关键是写出函数的极值和函数在两个端点处的值,把这些值进行比较,得到最大值和最小值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 异面直线AC1与CB所成的角为45° | B. | BD∥平面CB1D1 | ||
| C. | 平面A1BD∥平面CB1D1 | D. | 异面直线AD与CB1所成的角为45° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 方案代号 | 月租费(元) | 免费时间(分) | 超过免费时间的通话费(元/分) |
| 1 | 30 | 48 | 0.60 |
| 2 | 98 | 170 | 0.60 |
| 3 | 168 | 330 | 0.50 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com