精英家教网 > 高中数学 > 题目详情

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销量价格P(元)的关系如图所示;③每月需各种开支2 000元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

(2)企业乙只依靠该店,最早可望在几年后脱贫?

【答案】见解析

【解析】

解:设该店月利润余额为L元,

则由题设得L=Q(P-14)×100-3 600-2 000,①

由销量图易得Q=

代入①式得L=

(1)当14≤P≤20时,Lmax=450元,此时P=19.5元;

当20<P≤26时,Lmax元,此时P=元.

故当P=19.5元时,月利润余额最大,为450元.

(2)设可在n年后脱贫,依题意有12n×450-50 000-58 000≥0,解得n≥20.

即最早可望在20年后脱贫.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱柱的底面是边长为的菱形,且平面,设的中点

1求证:平面

2在线段上,且平面,求平面和平面所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村电费收取有以下两种方案供农户选择:

方案一:每户每月收取管理费2元,月用电量不超过30度时,每度0.5元;超过30度时,超过部分按每度0.6元收取;

方案二:不收管理费,每度0.58元.

1)求方案一收费(元)与用电量(度)间的函数关系;

2)老王家九月份按方案一交费35元,问老王家该月用电多少度?

3)老王家该月用电量在什么范围内,选择方案一比选择方案二更好?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的个数是( )

①命题“x0∈R,x+1>3x0的否定是“x∈R,x2+1≤3x”;

②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;

③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;

④“平面向量a与b的夹角是钝角”的充要条件是“a·b<0”

A.1 B.2

C.3 D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】倾斜角为的直线过点P(8,2),直线和曲线C:为参数)交于不同的两点M1、M2.

(1)将曲线C的参数方程化为普通方程,并写出直线的参数方程;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1 ,正方形的边长为分别是的中点,是正方形的对角线的交点,是正方形两对角线的交点,现沿折起到的位置,使得,连结(如图2).

(1)求证:

(2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的最小值;

(2)若函数的图象恰有一个公共点,求实数的值;

(3)若函数有两个不同的极值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,讨论函数的单调性;

(2)若对任意及任意 ,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, .

(1)当时, 为增函数,求实数的取值范围;

(2)设函数,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案