精英家教网 > 高中数学 > 题目详情
17.定义在R上的奇函数f(x)=x3+sinx-ax+a-2的一个零点所在的区间为(  )
A.$({\frac{1}{2},1})$B.$({1,\frac{π}{2}})$C.$({\frac{π}{2},2})$D.(2,π)

分析 根据奇函数的性质求出a的值,再很据f(1)•f($\frac{π}{2}$)<0,即可求出答案.

解答 解:∵定义在R上的奇函数f(x)=x3+sinx-ax+a-2,
∴f(0)=a-2=0,
解得a=2,
∴f(x)=x3+sinx-2x,
∴f(1)=1-2+sin1<0,f($\frac{π}{2}$)=$\frac{{π}^{3}}{8}$-π+1>0,
∴f(1)•f($\frac{π}{2}$)<0,
∴函数一个零点所在的区间为(1,$\frac{π}{2}$),、
故选:B

点评 本题考查了奇函数的性质和函数的零点存在定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow a$=(1,-2),$\overrightarrow b$=(2,m),且$\overrightarrow a$∥$\overrightarrow b$,则3$\overrightarrow a$+2$\overrightarrow b$=(  )
A.(7,2)B.(7,-14)C.(7,-4)D.(7,-8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=ax(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)$\sqrt{x}$在[0,+∞)上是增函数,则m=$\frac{1}{16}$,a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形的面积,若asinA+bsinB=csinC,且S=$\frac{1}{4}({a^2}+{c^2}-{b^2})$,则对△ABC的形状的精确描述是(  )
A.直角三角形B.等腰三角形
C.等腰或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线2x-ay+2=0与直线x+y=0的交点的纵坐标小于0,则(  )
A.a>-2B.a>2C.a<-2D.a<-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两平行直线4x-2y+7=0,2x-y+1=0之间的距离等于坐标原点O到直线l:x-2y+m=0(m>0)的距离的一半.
(1)求m的值;
(2)判断直线l与圆C:x2+(y-2)2=$\frac{1}{5}$的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数 f(x)=$\sqrt{x-1}$-lg(2-x)的定义域为[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|$\frac{1}{x}$-1|,其中x>0
(1)求f(x)的单调区间;
(2)是否存在实数a,b ( 0<a<b ),使得函数f(x)的定义域和值域都是[a,b]若存在,请求出a,b的值;若不存在,请说明理由;
(3)若存在实数a,b ( 0<a<b ),使得函数f(x)的定义域是[0,b],值域是[ma,mb]( m≠0 ),求实数 m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=-x2+2x+3(0≤x<3)的值域是(0,4].

查看答案和解析>>

同步练习册答案