精英家教网 > 高中数学 > 题目详情
17.函数y=-x2+2x+3(0≤x<3)的值域是(0,4].

分析 根据已知中函数的解析式及定义域,分析出函数的最大值及下界,可得函数的值域.

解答 解:函数y=f(x)=-x2+2x+3的图象是开口朝下,且以直线x=1为对称轴的抛物线,
由0≤x<3得:
当x=1时,函数取最大值4,
由f(0)=3,f(3)=0,得:函数值的下界为0,
故函数y=-x2+2x+3(0≤x<3)的值域是(0,4],
故答案为:(0,4]

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.定义在R上的奇函数f(x)=x3+sinx-ax+a-2的一个零点所在的区间为(  )
A.$({\frac{1}{2},1})$B.$({1,\frac{π}{2}})$C.$({\frac{π}{2},2})$D.(2,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若定义在R上的偶函数f(x)在[0,+∞)内是增函数,且f(3)=0,则关于x的不等式x•f(x)≤0的解集为(  )
A.{x|-3≤x≤0或x≥3}B.{x|x≤-3或-3≤x≤0}C.{x|-3≤x≤3}D.{x|x≤-3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列说法正确的是①③④⑤⑥(填上你认为正确的所有命题的序号)
①函数y=-sin(kπ+x)(k∈Z)是奇函数;
②函数y=2sin(2x+$\frac{π}{3}$)的图象关于点($\frac{π}{12}$,0)对称;
③函数y=2sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)的最小正周期是π;
④△ABC中,cosA>cosB充要条件是A<B; 
⑤函数y=cos2x+sinx的最小值是-1.
⑥y=|sin(2x+$\frac{π}{6}$)+1|最小正周期为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于函数y=f(x),如果f(x0)=x0,我们就称实数x0是函数f(x)的不动点.设函数f(x)=3+log2x,则函数f(x)的不动点一共有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最大值为(  )
A.3B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知⊙O方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,求弦AB中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等差数列{an}中,Sn为其前n项和,已知S2016=2016,且$\frac{{S}_{2016}}{2016}$-$\frac{{S}_{16}}{16}$=2000,则a1等于(  )
A.-2017B.-2016C.-2015D.-2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线的渐进线方程为y=±2x,且过点(-3,$4\sqrt{2}$).
(1)求双曲线的方程;
(2)若直线4x-y-6=0与双曲线相交于A、B两点,求|AB|的值.

查看答案和解析>>

同步练习册答案