精英家教网 > 高中数学 > 题目详情

对于集合A={x|x=m2-n2,m∈Z,n∈Z},因为16=52-32,所以16∈A,研究下列问题:
(1) 1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?
(2) 讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.

解:(1)∵1=12-02;3=22-12;5=32-22;4=22-02
∴1,3,4,5∈A,且2,6∉A;(5分)
设2∈A,得存在m,n∈Z,使2=m2-n2成立.(m-n)(m+n)=2
当m,n同奇或同偶时,m-n,m+n均为偶数
∴(m-n)(m+n)为4的倍数,与2不是4倍数矛盾.
当m,n同分别为奇,偶数时,m-n,m+n均为奇数
(m-n)(m+n)为奇数,与2是偶数矛盾.∴2∉A同理6∉A(8分)
(2)4=22-02;8=32-12;12=42-22
2,6,10,14,∉A,结论:是4的倍数的数属于A.(12分)
分析:(1)根据集合A的元素的性质证明1,3,4,5∈A,对于2和6用反证法进行证明,证明过程注意根据整数是奇(偶)进行分类说明;
(2)根据集合A的元素的性质,在偶数中找出是集合A的元素和一些不是的A的元素,由这些数的特征进行归纳得出结论.
点评:本题考查了元素与集合的关系,只要根据集合元素满足的性质进行判断,利用归纳推理思想方法进行归纳出集合元素的性质的结论,考查了分析和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、对于集合A={x|x=m2-n2,m∈Z,n∈Z},因为16=52-32,所以16∈A,研究下列问题:
(1) 1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?
(2) 讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x||x-a|=4},集合B={1,2,b}.
(1)是否存在实数a的值,使得对于任意实数b都有A⊆B?若存在,求出对应的a;若不存在,试说明理由;
(2)若A⊆B成立,求出对应的实数对 (a,b).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},现在我们定义对于任意两个集合M,N的运算:M?N={x|x∈M∪N,且x?M∩N},则A?B=(  )
A、{1,2,3}B、{1,2}C、{2,3}D、{1,3}

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于集合A={x|x=m2-n2,m∈Z,n∈Z},因为16=52-32,所以16∈A,研究下列问题:
(1) 1,2,3,4,5,6六个数中,哪些属于A,哪些不属于A,为什么?
(2) 讨论集合B={2,4,6,8,…,2n,…}中有哪些元素属于A,试给出一个一般的结论,不必证明.

查看答案和解析>>

同步练习册答案