精英家教网 > 高中数学 > 题目详情
12.若关于x的函数y=lg[x2+(k+2)x+$\frac{5}{4}$]的定义域为R,求实数k的取值范围.

分析 依题意,令g(x)=x2+(k+2)x+$\frac{5}{4}$,利用g(x)>0恒成立即可求得实数k的取值范围

解答 解:∵函数f(x)=lg[x2+(k+2)x+$\frac{5}{4}$]的定义域为R,
令g(x)=x2+(k+2)x+$\frac{5}{4}$,
则g(x)>0恒成立,
∵g(x)的二次项系数为1>0,
∴△=(k+2)2-5<0,
即k2+4k-1<0,
解得k∈($-2-\sqrt{5}$,$-2+\sqrt{5}$)

点评 本题考查函数恒成立问题,着重考查对数函数的定义域,考查△的应用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=cos2x+asinx-2a-2.
(I)当a=-2时,求满足f(x)=0的x值;
(Ⅱ)当关于x的方程f(x)=0有实数解时,求实数a的取值范围;
(Ⅲ)若对任意x∈R都有-5≤f(x)≤-1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设等差数列{an}与{bn}的前n项和分别为Sn和Tn,并且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{n+2}{3n+4}$对于一切n都成立,则$\frac{{a}_{12}}{{b}_{12}}$=$\frac{25}{73}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC是个一直角三角形,则经过平行投影后所得三角形是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\frac{elnx}{x}$,其中e是自然对数的底数,则函数f(x)在(0,3)上的最大值为(  )
A.1B.2C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥S-ABCD中,底面ABCD为菱形,侧面SBC⊥底面ABCD,已知∠ABC=60°,AB=SB=SC=2.
(1)证明:BC⊥SA;
(2)求直线SD与平面SAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数$f(x)=\frac{1}{x(1-x)}$的单调增区间为[$\frac{1}{2}$,1)和(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知焦点在x轴上的双曲线C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1的一个焦点F到其中一条渐近线的距离2,则n的值为(  )
A.2B.$\sqrt{2}$C.4D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求${3}^{1+lo{g}_{3}6}$-${2}^{4+lo{g}_{2}3}$+103lg3+$(\frac{1}{9})^{lo{g}_{3}4}$.

查看答案和解析>>

同步练习册答案