精英家教网 > 高中数学 > 题目详情
(12分)已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.
(1).(2)上最大值是,最小值是
(1)本小题实质是上恒成立,然后再进一步转化为
即可.
(2)由题意知,从而可建立关于a的方程,从而得到a的值,然后再利用导数求闭区间上的最值即可.
(1),要上是增函数,则恒成立,∴,故.
(2)由的极值点,得,∴
时,时,
上最大值是,最小值是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,试比较的大小;
(3)求证:).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在五棱锥,,,
,,
(1)求证:平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数在(0,1)上是增函数.(1)求的取值范围;
(2)设),试求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数有3个不同的零点,则实数的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 已知函数处取得极小值.
(1)求m的值。
(2)若上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间和最小值;
(Ⅱ)若函数上是最小值为,求的值;
(Ⅲ)当(其中="2.718" 28…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)已知函数
(1)利用函数单调性的定义,判断函数上的单调性;
(2)若,求函数上的最大值

查看答案和解析>>

同步练习册答案