精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,试比较的大小;
(3)求证:).
(1)函数上单调递增,在上单调递减. 的极大值是,极小值是
(2)①当时,,即
②当时,,即
③当时,,即
(3)见解析。
(1)当时,利用列表确定极值.
(2)当a=2时,,因为h(1)=0,所以利用导数研究h(x)与h(1)大小比较即可.
(3)解本小题的关键是根据(2)的结论,当时,,即
,则有,  
,然后叠加证不等式即可.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数的图象是连续不断的曲线,且有如下的对应值表

1
2
3
4
5
6

124.4
35
-74
14.5
-56.7
-123.6
  则函数在区间[1,6]上的零点至少有(   )
A、2个            B、3个            C、4个           D、5个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,函数图象上的点都在所表示的平面区域内,求实数a的取值范围.
(Ⅲ)求证:(其中,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(15分)已知函数.
(1)若的切线,函数处取得极值1,求的值;
证明:
(3)若,且函数上单调递增,
求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题12分)
已知函数上为单调递增函数.
(Ⅰ)求实数的取值范围;
(Ⅱ)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,其中.
(Ⅰ)若的极值点,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)若上的最大值是,求的取值范围 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数上可导,其导函数,且函数处取得极小值,
则函数的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分15分)已知为常数,函数)。
(Ⅰ) 若函数在区间(-2,-1)上为减函数,求实数的取值范围;
(Ⅱ).设 记函数,已知函数在区间内有两个极值点,且,若对于满足条件的任意实数都有为正整数),求的最小值。

查看答案和解析>>

同步练习册答案