精英家教网 > 高中数学 > 题目详情
如图,C、D是以AB为直径的圆上两点,AB=2AD=2
3
,AC=BC,F 是AB上一点,且AF=
1
3
AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=
2

(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A-CFD的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)依题AD⊥BD,CE⊥AD,由此能证明AD⊥平面BCE.
(2)由已知得BE=2,BD=3.从而AD∥EF,由此能证明AD∥平面CEF.
(3)由VA-CFD=VC-AFD,利用等积法能求出三棱锥A-CFD的体积.
解答: (1)证明:依题AD⊥BD,
∵CE⊥平面ABD,∴CE⊥AD,
∵BD∩CE=E,
∴AD⊥平面BCE.
(2)证明:Rt△BCE中,CE=
2
,BC=
6
,∴BE=2,
Rt△ABD中,AB=2
3
,AD=
3
,∴BD=3.
BF
BA
=
BE
BD
=
2
3

∴AD∥EF,∵AD在平面CEF外,
∴AD∥平面CEF.
(3)解:由(2)知AD∥EF,AD⊥ED,
且ED=BD-BE=1,
∴F到AD的距离等于E到AD的距离为1.
∴S△FAD=
1
2
×
3
×1
=
3
2

∵CE⊥平面ABD,
∴VA-CFD=VC-AFD=
1
3
S△FAD•CE
=
1
3
×
3
2
×
2
=
6
6
点评:本题考查直线与平面垂直的证明,考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(sinθ,cosθ,
2
),
b
=(cosθ,sinθ,
2
2
),且
a
b
,则θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,M,N,P分别为线段AB,CD,C1D1的中点.求证:
(1)C1M∥平面ANPA1
(2)平面C1MC∥平面ANPA1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:y=m和l2:y=
8
2m+1
(m>0),l1与函数y=|log2x|的图象从左至右相交于点A、B,l2与函数y=|log2x|的图象从左至右相交于点C、D.记线段AC和BD在x轴上的投影长度分别为a、b.当m变化时,求
b
a
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn=2an-n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
an
an+1
,记数列{bn}的前n和为Tn,证明:-
1
3
Tn-
n
2
<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=2,E、F分别是PB,AB的中点.
(1)求证:CD∥面PAB;
(2)求证:EF⊥CD;
(3)求三棱锥B-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,已知a1=1,an+1=
2n+2
n
an(n=1,2,3,…).
(Ⅰ)证明:数列{
an
n
}是等比数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
3
+
y2
7
=1
的准线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3,( n∈N*).求a2及an

查看答案和解析>>

同步练习册答案