精英家教网 > 高中数学 > 题目详情
椭圆
x2
3
+
y2
7
=1
的准线方程是
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出椭圆的a,b,c,再由椭圆的准线方程:y=±
a2
c
,即可得到.
解答: 解:椭圆
x2
3
+
y2
7
=1
的a=
7
,b=
3
,c=
a2-b2
=2,
则准线方程为:y=±
a2
c
,即y=±
7
2

故答案为:y=±
7
2
点评:本题考查椭圆的方程和性质,考查准线方程的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1(a>b>0),离心率e=
2
2
,O为原点坐标原点,且椭圆的一短轴端点到一焦点的距离为4
2

(1)求椭圆E的方程
(2)若M(X0,Y0)为椭圆E上的动点,其中2<Y0
31
2
,过点M作圆x2+(y-1)2=1的两切线,两切线与x轴围成的三角形面积为S,求S关于y0的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,C、D是以AB为直径的圆上两点,AB=2AD=2
3
,AC=BC,F 是AB上一点,且AF=
1
3
AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知CE=
2

(1)求证:AD⊥平面BCE;
(2)求证:AD∥平面CEF;
(3)求三棱锥A-CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=2x2的焦点F到准线l的距离是(  )
A、2
B、1
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+x-
x
2
 
2
+
x
3
 
3
-
x
4
 
4
+…+
x
2001
 
2001
,则函数f(x)在其定义域内的零点个数是(  )
A、0B、lC、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=Asin(ωx+φ)(ω>0,|φ|<
π
2
,x∈R)的部分图象如图所示,则函数表达式(  )
A、y=-4sin(
π
8
x-
π
4
B、y=4sin(
π
8
x-
π
4
C、y=-4sin(
π
8
x+
π
4
D、y=4sin(
π
8
x+
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x-
2
x
)
6
的展开式中各项系数和与常数项分别为M,N,则
N
M
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+(2k-1)x+k2=0的两个实根都比1大,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2ωx+
π
3
),(其中ω>0),且f(x)的图象在y轴右侧的第一个最高点的横坐标是
π
6

(1)求f(x)的最小正周期;
(2)若f(x)+
3
2
+a在区间[-
π
3
6
]上的最小值为
3
,求实数a的值.

查看答案和解析>>

同步练习册答案