精英家教网 > 高中数学 > 题目详情
17.已知集合M={x|-1<x<1},N={x|x2<4,x∈Z},则(  )
A.M∩N={0}B.N⊆MC.M⊆ND.M∪N=N

分析 化简集合N,利用集合的交集的定义,即得出结论.

解答 解:∵集合M={x|-1<x<1},N={x|x2<4,x∈Z}={-1,0,1},
∴M∩N={0},
故选:A.

点评 本题考查集合的交集的定义,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若$\frac{sin(π-α)+sin(\frac{π}{2}-α)}{sinα-cosα}$=$\frac{1}{2}$,则 tan2α(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-$\frac{4}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i为虚数单位,则($\frac{1+i}{1-i}$)2=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙三人准备报考某大学,假设甲考上的概率为$\frac{2}{5}$,甲,丙两都考不上的概率为$\frac{6}{25}$,乙,丙两都考上的概率为$\frac{3}{10}$,且三人能否考上相互独立.
(Ⅰ)求乙、丙两人各自考上的概率;
(Ⅱ)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢.
(1)根据以上数据完成以下2×2列联表:
喜欢看足球比赛不喜欢看足球比赛总计
总计
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)在志愿者中,有两男两女能做播音员工作,恰有一男一女播音的概率是多少?
附:参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.40.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.经过函数y=-$\frac{2}{x}$图象上一点M引切线l与x轴、y轴分别交于点A和点B,O为坐标原点,记△OAB的面积为S,则S=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若曲线f(x)=ax+ex存在垂直于y轴的切线,则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,是真命题的是(  )
A.?x0∈R,e${\;}^{{x}_{0}}$≤0
B.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1
C.?x∈R,2x>x2
D.已知a,b为实数,则a>1,b>1是ab>1的充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F分别在BC,AD上,EF∥AB,现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)若BE=3,求几何体BEC-AFD的体积;
(2)求三棱锥A-CDF的体积的最大值,并求此时二面角A-CD-E的正切值.

查看答案和解析>>

同步练习册答案