精英家教网 > 高中数学 > 题目详情
5.甲、乙、丙三人准备报考某大学,假设甲考上的概率为$\frac{2}{5}$,甲,丙两都考不上的概率为$\frac{6}{25}$,乙,丙两都考上的概率为$\frac{3}{10}$,且三人能否考上相互独立.
(Ⅰ)求乙、丙两人各自考上的概率;
(Ⅱ)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.

分析 (Ⅰ)设A表示“甲考上”,B表示“乙考上”,C表示“丙考上”,由已知条件利用对立事件概率计算公式和相互独立事件概率乘法公式能求出乙、丙两人各自考上的概率.
(Ⅱ)由题意X的可能取值为1,3,分别求出相应的概率,由此能求出X的分布列和期望.

解答 解:(Ⅰ)设A表示“甲考上”,B表示“乙考上”,C表示“丙考上”,
则P(A)=$\frac{2}{5}$,且$\left\{\begin{array}{l}{(1-\frac{2}{5})(1-P(C))=\frac{6}{25}}\\{P(B)P(C)=\frac{3}{10}}\end{array}\right.$,
解得P(C)=$\frac{3}{5}$,P(B)=$\frac{1}{2}$.
∴乙考上的概率为$\frac{1}{2}$,丙考上的概率为$\frac{3}{5}$.
(Ⅱ)由题意X的可能取值为1,3,
P(X=1)=$\frac{2}{5}×\frac{1}{2}×\frac{2}{5}$+$\frac{3}{5}×\frac{1}{2}×\frac{2}{5}$+$\frac{3}{5}×\frac{1}{2}×\frac{3}{5}$+$\frac{2}{5}×\frac{1}{2}×\frac{2}{5}$+$\frac{2}{5}×\frac{1}{2}×\frac{3}{5}$+$\frac{3}{5}×\frac{1}{2}×\frac{3}{5}$=$\frac{19}{25}$,
P(X=3)=$\frac{2}{5}×\frac{1}{2}×\frac{3}{5}+\frac{3}{5}×\frac{1}{2}×\frac{2}{5}$=$\frac{6}{25}$,
∴X的分布列为:

 X 1 3
 P $\frac{19}{25}$ $\frac{6}{25}$
EX=$1×\frac{19}{25}+2×\frac{6}{25}$=$\frac{31}{25}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件概率计算公式和相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某公司做了用户对其产品满意度的问卷调查,随机抽取20名男女用户,汇总数据如表
不满意满意合计
145
合计20
由于部分数据丢失,根据原始资料只查得:从满意的人数中任意抽取2人,都是男生的概率是$\frac{2}{7}$.
(Ⅰ)根据条件完成以上2×2列联表,并据此判断有多大以上的把握认为“用户满意度”与性别有关.
(Ⅱ)从以上男性用户中抽取2人,女性用户中抽取1人,其中满意的人数为X,求X的分布列和期望E(X).
附:χΧ
2=$\frac{{n{{({ad-bc})}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(χ2≥k)0.1000.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.己知函数f(x)=x2+(a+1)x+b
(1)若函数在[1,+∞)上单调递增,求实数a的取值范围;
(2)函数f(x)的图象过点(3,3)且满足f(x)≥x恒成立,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知i为虚数单位,实数a与纯虚数z满足(2-i)z=4-ai,则a的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.小张、小王、小李三名大学生到三个城市去实习,每人只去一个城市,设事件A为“三个人去的城市都不同”事件B为“小张单独去了一个城市”,则P(A|B)=(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式-x2-2x+3>0的解集为(-3,1);(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|-1<x<1},N={x|x2<4,x∈Z},则(  )
A.M∩N={0}B.N⊆MC.M⊆ND.M∪N=N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AB=2,AC=3,G为△ABC的重心,若AG=$\frac{4}{3}$,则△ABC的面积为(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{3\sqrt{6}}{16}$C.$\sqrt{15}$D.$\frac{3\sqrt{15}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1的侧面AA1C1C是矩形,侧面AA1C1C⊥侧面AA1B1B,且AB=4AA1=4,∠BAA1=60°,D是AB的中点.
(Ⅰ)求证:AC1∥平面CDB1
(Ⅱ)求证:DA1⊥平面AA1C1C
(Ⅲ)若AA1=A1C1,点M在棱A1C1上,且A1M=λA1C1,若二面角M-AD-A1为30°,求λ的值.

查看答案和解析>>

同步练习册答案