精英家教网 > 高中数学 > 题目详情
20.小张、小王、小李三名大学生到三个城市去实习,每人只去一个城市,设事件A为“三个人去的城市都不同”事件B为“小张单独去了一个城市”,则P(A|B)=(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{1}{2}$

分析 这是求小张单独去了一个城市的前提下,三个人去的城市都不同的概率,求出相应基本事件的个数,即可得出结论.

解答 解:小张单独去了一个城市,则有3个城市可选,小王、小李只能在小张剩下的两个城市中选择,可能性为2×2=4 
所以小张单独去了一个城市的可能性为3×2×2=12
因为三个人去的城市都不同的可能性为3×2×1=6,
所以P(A|B)=$\frac{6}{12}$=$\frac{1}{2}$.
故选:D.

点评 本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.$\int_{-\frac{π}{2}}^{\frac{π}{2}}$(2x-sinx)dx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题:
①已知a,b,m都是正数,并且a<b,则$\frac{a+m}{b+m}$>$\frac{a}{b}$;
②在△ABC中,角A,B,C的对边分别为a,b,c,若∠A=60°,a=7,b=8,则三角形有一解;
③若函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,则f($\frac{1}{11}$)+f($\frac{2}{11}$)+f($\frac{3}{11}$)+…+f($\frac{10}{11}$)=5;
④在等比数列{an}中,a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(其中n∈N*,q为公比);
⑤如图,在正方体ABCD-A1B1C1D1中,点M,N分别是CD,CC1的中点,则异面直线A1M与DN所成角的大小是90°.
其中真命题有①③⑤(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i为虚数单位,则($\frac{1+i}{1-i}$)2=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.为了解“网络游戏对当代青少年的影响”做了一次调查,共调查了26名男同学、24名女孩同学.调查的男生中有8人不喜欢玩电脑游戏,其余男生喜欢玩电脑游戏;而调查的女生中有9人喜欢玩电脑游戏,其余女生不喜欢电脑游戏.
(1)根据以上数据填写如下2×2的列联表:
性别
对游戏态度
男生女生合计
喜欢玩电脑游戏18927
不喜欢玩电脑游戏81523
合计262450
(2)根据以上数据,能否在犯错误的概率不超过0.025的前提下认为“喜欢玩电脑游戏与性别关系”?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.050.0250.010
k03.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙三人准备报考某大学,假设甲考上的概率为$\frac{2}{5}$,甲,丙两都考不上的概率为$\frac{6}{25}$,乙,丙两都考上的概率为$\frac{3}{10}$,且三人能否考上相互独立.
(Ⅰ)求乙、丙两人各自考上的概率;
(Ⅱ)设X表示甲、乙、丙三人中考上的人数与没考上的人数之差的绝对值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市举办校园足球赛,组委会为了做好服务工作,招募了12名男志愿者和10名女志愿者,调查发现男女志愿者中分别有8人和4人喜欢看足球比赛,其余不喜欢.
(1)根据以上数据完成以下2×2列联表:
喜欢看足球比赛不喜欢看足球比赛总计
总计
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜欢看足球比赛有关?
(3)在志愿者中,有两男两女能做播音员工作,恰有一男一女播音的概率是多少?
附:参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.40.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若曲线f(x)=ax+ex存在垂直于y轴的切线,则实数a的取值范围是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,点F为C1D1的中点,点E在CC1上,且CE=1.
(Ⅰ)证明:AE⊥平面A1BD;
(Ⅱ)求二面角F-A1D-B的余弦值.

查看答案和解析>>

同步练习册答案