| A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{3\sqrt{6}}{16}$ | C. | $\sqrt{15}$ | D. | $\frac{3\sqrt{15}}{4}$ |
分析 由G为重心,设BE=x,可得BC=2x,可求AE,由余弦定理可得$\frac{A{B}^{2}+B{E}^{2}-A{E}^{2}}{2AB•BE}$=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$,代入可求x的值,进而可求BC,利用余弦定理可求cosB,根据同角三角函数基本关系式可求sinB,利用三角形面积公式即可计算得解.
解答
解:由:G为△ABC的重心,设BE=x,
可得BC=2x(E为BC中点),
由:AG=$\frac{4}{3}$,可得AE=2,
由余弦定理可得:
cosB=$\frac{A{B}^{2}+B{E}^{2}-A{E}^{2}}{2AB•BE}$=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$,
由于:AB=2,AC=3,
可得:$\frac{4+{x}^{2}-4}{2×2×x}$=$\frac{4+4{x}^{2}-9}{2×2×2x}$,整理解得:x=$\frac{\sqrt{10}}{2}$.
可得:BC=2×$\frac{\sqrt{10}}{2}$=$\sqrt{10}$,
∴cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{4+10-9}{2×2×\sqrt{10}}$=$\frac{\sqrt{10}}{8}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3\sqrt{6}}{8}$,
∴S△ABC=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{2}×2×\sqrt{10}×$$\frac{3\sqrt{6}}{8}$=$\frac{3\sqrt{15}}{4}$.
故选:D.
点评 本题主要考查了三角形重心的性质,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了计算能力和数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,e${\;}^{{x}_{0}}$≤0 | |
| B. | 已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1 | |
| C. | ?x∈R,2x>x2 | |
| D. | 已知a,b为实数,则a>1,b>1是ab>1的充分条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com