精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,M为的棱BB1的中点,则异面直线AM与BD1所成角的余弦值是(  )
A.
10
15
B.
15
10
C.
10
10
D.
15
15
精英家教网
以D为原点,DC所在的直线为y轴,DA所在的直线为x轴,DD1所在的直线 为Z轴建立空间直角坐标系.
则B(1,1 0),D1(0,0,1),A(1,0,0),M(1,1,
1
2
).
BD1
=(-1,-1,1),
AM
=(0,1,
1
2
).
∴cos<
BD1
AM
>=
BD1
AM
|
BD1
|• 
|AM
|
=
0-1+
1
2
3
×
5
4
=-
15
15

故异面直线AM与BD1所成角的余弦值是
15
15

故选:D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案