【题目】已知椭圆C:
1(a>b>0)的右焦点为F,离心率为
,且有3a2=4b2+1.
(1)求椭圆C的标准方程;
(2)过点F的直线l与椭圆C交于M,N两点,过点M作直线x=3的垂线,垂足为点P,证明直线NP经过定点,并求出这个定点的坐标.
【答案】(1)
1;(2)见解析,定点(2,0).
【解析】
(1)运用椭圆的离心率公式和a,b,c的关系,结合条件,解方程可得a,b,进而得到椭圆方程;
(2)求得F的坐标,讨论直线l不与x轴重合,设出直线l的方程,联立椭圆方程,运用韦达定理和直线恒过定点的求法,可得所求定点;讨论当直线l与x轴重合也成立.
(1)由e
,所以
1
1
,
联立方程组
,解得a2=3,b2=2,
所以椭圆的方程为
1;
(2)证明:由(1)可得F(1,0),
当直线l不与x轴重合时,设直线l的方程为x=my+1,
联立椭圆方程2x2+3y2=6,消去x可得(3+2m2)y2+4my
4=0,
,
设M(x1,y1),N(x2,y2),可得y1+y2
,y1y2
,
且点P(3,y1),则NP的方程为(x2﹣3)y=(y2﹣y1)(x﹣3)+y1(x2﹣3),
又x2=my2+1,所以(my2
2)y=(y2
y1)(x
3)+my1y2
2y1(*)
由y1+y2
,y1y2
可得my1y2=y1+y2,
则(*)式可变形为(my2
2)y=(y2
y1)(x
3)
y1+y2.
所以(my2﹣2)y=(y2﹣y1)(x﹣2),即直线NP经过定点(2,0).
当直线l与x轴重合时,显然直线NP也经过定点(2,0),
综上,直线NP经过定点(2,0).
科目:高中数学 来源: 题型:
【题目】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:
![]()
则下面结论中正确的是( )
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了![]()
C.新农村建设后,养殖收入没有增加
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 |
|
|
|
|
|
|
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在
的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为
,求
的分布列和数学期望.
参考公式:
,其中
.
临界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知斜率为1的直线交抛物线
:
(
)于
,
两点,且弦
中点的纵坐标为2.
(1)求抛物线
的标准方程;
(2)记点
,过点
作两条直线
,
分别交抛物线
于
,
(
,
不同于点
)两点,且
的平分线与
轴垂直,求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的连续函数f(x)满足f(x)=f(2﹣x),导函数为f′(x).当x>1时,2f(x)+(x﹣1)f′(x)>0,且f(﹣1)
,则不等式f(x)<6(x﹣1)﹣2的解集为( )
A.(﹣1,1)∪(1,4)B.(﹣1,1)∪(1,3)
C.(
,1)∪(1,2)D.(
,1)∪(1,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
的左顶点为
,左焦点为
,及点
,且
、
、
成等比数列.
(1)求椭圆
的方程;
(2)斜率不为
的动直线
过点
且与椭圆
相交于
、
两点,记
,线段
上的点
满足
,试求
(
为坐标原点)面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列
的前
项中的最大项为
,最小项为
,设
.
(1)若
,求数列
的通项公式;
(2)若
,求数列
的前
项和
;
(3)若数列
是等差数列,求证:数列
是等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com