精英家教网 > 高中数学 > 题目详情
有四个数和为21,前3个数为等比数列,后3个数为等差数列和为12,求这四个数.
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:先根据题意设出这四个数,进而根据四个数和为21列出方程求得d,则四个数可得.
解答: 解:依题意可设这四个数分别为:
(4-d)2
4
,4-d,4,4+d,则
由四个数和为21可列方程得,
(4-d)2
4
+12=21
解得d=10或d=-2.
∴这四个数分别为:9,-6,4,14或9,6,4,2.
点评:本题主要考查了等差数列的性质和等比数列的性质.解题的关键是设出这四个数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若复数z满足
z+i
i
=2+i(其中i为虚数单位),则z的共轭复数为(  )
A、-1-iB、1-i
C、-1+iD、1+i

查看答案和解析>>

科目:高中数学 来源: 题型:

正项数列{an}满足:an2-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an
(2)令bn=an•3n,求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,a4=S2,a2n+2=2an
(1)求数列{an}的通项公式;
(2)若bn=
4
anan+1
,求数列{bn}的前n项和Tn,并求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

仔细观察下面的不等式,寻找规律,合理猜想出第n个不等式,并用数学归纳法证明你的猜想.
(1+
1
1
)>
3
,(1+
1
1
)(1+
1
3
)>
5
,(1+
1
1
)(1+
1
3
)(1+
1
5
)>
7
,(1+
1
1
)(1+
1
3
)(1+
1
5
)(1+
1
7
)>
9
,(1+
1
1
)(1+
1
3
)(1+
1
5
)(1+
1
7
)(1+
1
9
)>
11
.…

查看答案和解析>>

科目:高中数学 来源: 题型:

若可变形的三角形模型在变换过程中三角形周长和面积可同时取得最小值(或最大值),则称此模型为“周积三角形”.某模型厂家用一根定长连接杆AD,两根单向伸缩连接杆AB、AC(A端固定,B、C端可伸缩)以及一根双向伸缩连接杆BC制作了如图所示的可变三角形模型(所有连接杆均为笔直的金属杆).模型中,双向伸缩杆BC用一个活动连接装置固定在D点,使BC可在D处自由转动.已知:模型中,∠BAD=∠CAD=60°,AD=1分米,AB和AC最多可伸长到5分米,BC的双向伸缩能力均很强.设AB=x分米,AC=y分米.
(1)将y表示成x的函数,并求其定义域;
(2)判断此模型是否为“周积三角形”模型,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,f(x)=
1
ax+
a

(1)求值:f(0)+f(1),f(-1)+f(2);
(2)由(1)的结果归纳概括对所有实数x都成立的一个等式,并加以证明;
(3)若a∈N*,求和:f(-(n-1))+f(-(n-2))+…+f(-1)+f(0)+…f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

画出不等式组
x≥0
y>-2
2x-y+4≥0
所表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1的参数方程为
x=2cosφ
y=2sinφ
(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sin(θ+
π
3
).
(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标方程;
(2)圆C1,C2是否相交?若相交,请求出公共弦长,若不相交,请说明理由.

查看答案和解析>>

同步练习册答案