精英家教网 > 高中数学 > 题目详情
在△ABC中,A,B,C所对的边分别为a,b,c,且a=3,b=2
6
,B=2A.
(1)求cosA的值;
(2)求c的值.
考点:余弦定理
专题:计算题,解三角形
分析:(1)依题意,利用正弦定理
3
sinA
=
2
6
sin2A
及二倍角的正弦即可求得cosA的值;
(2)易求sinA=
3
3
,sinB=
2
2
3
,从而利用两角和的正弦可求得sin(A+B)=
5
3
9
,在△ABC中,此即sinC的值,利用正弦定理可求得c的值.
解答: 解:(1)∵△ABC中,a=3,b=2
6
,B=2A,
∴由正弦定理得:
3
sinA
=
2
6
sin2A
,即
2sinAcosA
sinA
=
2
6
3

∴cosA=
6
3

(2)由(1)知cosA=
6
3
,A∈(0,π),
∴sinA=
3
3
,又B=2A,
∴cosB=cos2A=2cos2A-1=
1
3
,B∈(0,π),
∴sinB=
2
2
3

在△ABC中,sinC=sin(A+B)=sinAcosB+cosAsinB=
3
3
×
1
3
+
6
3
×
2
2
3
=
5
3
9

∴c=
asinC
sinA
=
5
3
9
3
3
=5.
点评:本题考查正弦定理,考查两角和的正弦与诱导公式的应用,考查运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积为(  )
A、
9
2
B、
7
2
C、3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

二进制数111111(2)化成十进制数的值是(  )
A、63B、62C、64D、61

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为5.
(1)求抛物线C的方程;
(2)已知点A(4,0),M是抛物线上除顶点外的动点,是否存在垂直于x轴的直线l被以MA为直径的圆所截得的弦长恒为定值?如果存在,求出l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为1的圆O上有一定点M,A为圆O上的动点.在射线OM上有一动点B,AB=1,0B>1.线段AB交圆O于另一点C,D为线段的OB中点.求线段CD长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求直线y=x+
3
2
被曲线y=
1
2
x2截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三条直线l1:2x-y+a=0,l2:4x-2y-1=0,l3:x+y-1=0,而且l1与l2之间的距离是
7
5
10

(1)求a的值;
(2)能否在第一象限找到一点P,使得P同时满足下列两个条件:①P点到l1的距离与P点到l2的距离之比是1:2;②P点到l1的距离与P点到l3的距离之比是
2
5
;.若能,求出P点的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,测得该渔轮在北偏东45°、距离为10海里的C处,并测得渔轮正沿南偏东75°的方向、以每小时9海里的速度向附近的小岛靠拢.我海军舰艇立即以每小时21海里的速度沿直线方向前去营救;则舰艇靠近渔轮所需的时间是多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=4x的焦点是F,准线是l,则经过点F、M(4,4)且与l相切的圆共有
 
个.

查看答案和解析>>

同步练习册答案