精英家教网 > 高中数学 > 题目详情
已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为5.
(1)求抛物线C的方程;
(2)已知点A(4,0),M是抛物线上除顶点外的动点,是否存在垂直于x轴的直线l被以MA为直径的圆所截得的弦长恒为定值?如果存在,求出l的方程;如果不存在,说明理由.
考点:抛物线的应用
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由题意设:抛物线方程为y2=2px,其准线方程为x=-
p
2
,根据抛物线的大于可得:4+
p
2
=5,进而得到答案;
(2)设存在直线m:x=a满足题意,则圆心M(
x1+4
2
y1
2
),过M作直线x=a的垂线,垂足为E,设直线m与圆M的一个交点为G,可得:|EG|2=|MG|2-|ME|2=(a-3)x1+4a-a2,由此可得结论.
解答: 解:(1)由题意设抛物线方程为y2=2px(p>0),其准线方程为x=-
p
2

∵P(4,m)到焦点的距离等于A到其准线的距离,
∴4+
p
2
=5,∴∴p=2,
∴抛物线C的方程为y2=4x;
(2)设存在直线m:x=a满足题意,则圆心M(
x1+4
2
y1
2
),过M作直线x=a的垂线,垂足为E,
设直线m与圆M的一个交点为G,可得:|EG|2=|MG|2-|ME|2,…(9分)
即|EG|2=|MA|2-|ME|2=
(x1-4)2+y12
4
-(
x1+4
2
-a)2

=
1
4
y12+
(x1-4)2-(x1+4)2
4
+a(x1+4)-a2

=x1-4x1+a(x1+4)-a2
=(a-3)x1+4a-a2…(11分)
当a=3时,|EG|2=3,此时直线m被以AP为直径的圆M所截得的弦长恒为定值2
3
.…(12分)
因此存在直线m:x=3满足题意 …(13分)
点评:本题主要考查抛物线的标准方程,考查直线与抛物线的位置关系,考查弦长的计算,解题的关键是联立方程,利用韦达定理求解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若圆(x-a)2+(y-2)2=4被直线x-y+3=0截得的弦长为2
3
,则a=(  )
A、
2
B、±2+
3
C、±
2
-1
D、±
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P在椭圆
x2
25
+
y2
16
=1上,若A点坐标为(3,0),且|
AM
|=1,且
PM
AM
=0,则|
PM
|的最小值是(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=pn+q,其中p,q是常数,且p≠0.
(Ⅰ)数列{an}是否一定是等差数列?如果是,其首项与公差是什么?
(Ⅱ)设数列{an}的前n项和为Sn,且S10=310,S20=1220,试确定an的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an是Sn和1的等差中项,等差数列{bn}满足b1=a1,b4=S3
(1)求数列{an}、{bn}的通项公式;
(2)设cn=
1
bnbn+1
,数列{cn}的前n项和为Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2-48n
(Ⅰ)求数列的通项公式an
(Ⅱ) 数列{an}是等差数列吗?如不是,请说明理由;如是,请给出证明,并求出该等差数列的首项与公差.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C所对的边分别为a,b,c,且a=3,b=2
6
,B=2A.
(1)求cosA的值;
(2)求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=3,an+1+an=2n+5;
(1)求a2,a3,a4的值;
(2)求{an}的通项公式;
(3)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

“任意的a?α,均有a∥β”是“任意b?β,均有b∥α”的
 

查看答案和解析>>

同步练习册答案