精英家教网 > 高中数学 > 题目详情
求下列函数的定义域
(1)y=
sinx-
1
2

(2)y=
cosx-
1
2
考点:函数的定义域及其求法
专题:三角函数的求值
分析:(1)直接利用正弦函数的值域求解函数的定义域.
(2)直接利用余弦函数的值域求解函数的定义域.
解答: 解:(1)要使y=
sinx-
1
2
有意义,必须sinx-
1
2
≥0
,即sinx≥
1
2

2kπ+
π
6
≤x≤2kπ+
6
,k∈Z,
函数的定义域是:{x|2kπ+
π
6
≤x≤2kπ+
6
,k∈Z}.
(2)要使y=
cosx-
1
2
有意义,必须cosx-
1
2
≥0
,即cosx≥
1
2

2kπ-
π
3
≤x≤2kπ+
π
3
,k∈Z,
函数的定义域是:{x|2kπ-
π
3
≤x≤2kπ+
π
3
,k∈Z}.
点评:本题考查复合函数的定义域的求法,三角函数的值域的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|cosx|,g(x)=
lgx(x>0)
-
1
x
(x<0)
,则函数F(x)=f(x)-g(x)在区间[-
2
2
]内的零点个数为(  )
A、5B、7C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
ex
x
在区间[
1
2
,2]上的最小值为(  )
A、2
e
B、
1
2
e2
C、
1
e
D、e

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6

(1)求函数f(x)的周期
(2)若α∈(0,
π
2
),β∈(π,2π),f(
α
2
-
π
12
)=
8
5
,f(
β
2
+
π
6
)=
10
13
,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an},满足a3=5且a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,记数列{bn}前n项的和为Tn,当Tn≤λ恒成立时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
1
3
x3+
4
3

(1)求曲线在点P(2,4)处的切线方程;
(2)求曲线过点P(2,4)的切线方程;
(3)求斜率为1的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(ax+3)2,(a∈R),求证:f(1),f(2)至少有一个大于或等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
3
-
3
2
t
y=-1+
1
2
t
(t为参数),曲线C的极坐标方程为:ρ=
2
cos(θ+
π
4
)(极点与坐标原点重合,极轴与x轴的正半轴重合).
(Ⅰ)求直线l被曲线C所截的弦长;
(Ⅱ)将曲线C以极点为中心,逆时针旋转α角得到曲线C′.使得曲线C′与直线l相切,求α角的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解某次考试A,B两个班的数学成绩的情况,现分别从A,B班各抽取20位同学的数学成绩(满分100分)进行研究,得到茎叶图如图所示
(1)比较A,B两个班的数学成绩的平均水平和差异程度(不用计算,通过观察茎叶图直接回答结论)
(2)现将A,B班的学生成绩按[50,60),[60,70)[70,80),[80,90),[90,100]分成5组,分别列出频率分布表并完成频率分布直方图.

查看答案和解析>>

同步练习册答案