已知m∈R,对p:x1和x2是方程x2-ax-2=0的两个根,不等式|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立;q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使“p且q”为假命题、“p或q”为真命题的实数m的取值范围.
解析试题分析:解:由题设知x1+x2=a,x1x2=-2,
∴|x1-x2|==.
a∈[1,2]时,的最小值为3,要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只需|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判别式Δ=4m2-12(m+)=4m2-12m-16>0,得m<-1或m>4,
综上,要使“p且q”为假命题、“p或q”为真命题,只需p真q假或p假q真,即 或 解得实数m的取值范围是.
考点:逻辑联结词
点评:逻辑联结词有三个:且、或和非。在且命题中,只有两个命题都为真时,且命题才为真,而在或命题中,只要一个命题为真时,或命题就为真。
科目:高中数学 来源: 题型:解答题
甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求),每小时可获得利润是元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,要用栏杆围成一个面积为50平方米的长方形花园,其中有一面靠墙不需要栏杆,其中正面栏杆造价每米200元,两个侧面栏杆每米造价50元,设正面栏杆长度为米.
(1)将总造价y表示为关于的函数;
(2)问花园如何设计,总造价最少?并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
海安县城有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元.试求和;
(2)问:小张选择哪家比较合算?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com