精英家教网 > 高中数学 > 题目详情

【题目】已知圆C的圆心为(11),直线与圆C相切.

1)求圆C的标准方程;

2)若直线过点(23),且被圆C所截得的弦长为2,求直线的方程.

【答案】1;(2

【解析】

1)利用点到直线的距离可得:圆心到直线的距离.根据直线与圆相切,可得.即可得出圆的标准方程.

2)①当直线的斜率存在时,设直线的方程:,即:,可得圆心到直线的距离,又,可得:.即可得出直线的方程.②当的斜率不存在时,,代入圆的方程可得:,解得可得弦长,即可验证是否满足条件.

1)圆心到直线的距离

直线与圆相切,

圆的标准方程为:

2)①当直线的斜率存在时,设直线的方程:

即:,又

解得:

直线的方程为:

②当的斜率不存在时,,代入圆的方程可得:,解得,可得弦长,满足条件.

综上所述的方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点P为直线l上且不在x轴上的任意一点,直线与椭圆的交点分别为ABCDO为坐标原点.

1)求的周长;

2)设直线的斜线分别为,证明:

3)问直线l上是否存在点P,使得直线OAOBOCOD的斜率满足?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了检查生产产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.下表是甲流水线样本的频数分布表,下图是乙流水线样本的频率分布直方图.

甲流水线样本的频数分布表

质量指标值

频数

9

10

17

8

6

乙流水线样本的频率分布直方图

1)根据图形,估计乙流水线生产的产品的该项质量指标值的中位数;

2)设该企业生产一件合格品获利100元,生产一件不合格品亏损50元,若某个月内甲、乙两条流水线均生产了1000件产品,若将频率视为概率,则该企业本月的利润约为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们要计算由抛物线x轴以及直线所围成的区域的面积S,可用x轴上的分点1将区间分成n个小区间,在每个小区间上做一个小矩形,使矩形的左端点在抛物线上,这些矩形的高分别为,矩形的底边长都是,设所有这些矩形面积的总和为,为求S,只须令分割的份数n无限增大,就无限趋近于S,即.

1)求数列的通项公式,并求出S

2)利用相同的思想方法,探求由函数的图象,x轴以及直线所围成的区域的面积T.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形若直角三角形中较小的锐角,现在向该大止方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上没有最小值,则的取值范围是________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(

A.若无穷数列单调递增,则数列的极限存在

B.数列的一个极限值为0

C.若存在常数,使得恒成立,则无穷数列的极限存在

D.若无穷数列的极限存在,则存在常数,使得恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在年的自主招生考试成绩中随机抽取名学生的笔试成绩,按成绩分组:第,第,第,第,第得到的频率分布直方图如图所示

分别求第组的频率;

若该校决定在第组中用分层抽样的方法抽取名学生进入第二轮面试,

已知学生甲和学生乙的成绩均在第组,求学生甲和学生乙同时进入第二轮面试的概率;

根据直方图试估计这名学生成绩的平均分.(同一组中的数据用改组区间的中间值代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为.

1)试讨论函数的零点个数;

2)若对任意的,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案