精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在(﹣1,+∞)内的增函数,且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范围.

【答案】
(1)解:f(x)是定义在(﹣1,+∞)内的增函数,f(3)=1,函数满足f(xy)=f(x)+f(y),

令x=y=3,f(9)=f(3×3)=f(3)+f(3)=1+1=2.

即f(9)=2


(2)解:由(1)可得f(9)=2,

则f(a)>f(a﹣1)+2转化为f(a)>f(a﹣1)+f(9),

∴f(a)>f(9a﹣9),

又∵f(x)在(﹣1,+∞)上是增函数,

故得a的取值范围是(0,


【解析】(1)利用f(3)=1,函数满足f(xy)=f(x)+f(y),赋值法求解即可.(2)将f(3)=1转化为f(9),根据定义域和单调性转化为不等式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)= +alnx﹣3x,g(x)=﹣x2+8x,且x=1是函数f(x)的极大值点.
(1)求a的值.
(2)如果函数y=f(x)和函数y=g(x)在区间(b,b+1)上均为增函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.

分数段

3

9

18

15

6

9

6

4

5

10

13

2

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828


(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上者为优分(含80分),请你根据已知条件作出 列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= 是(﹣∞,+∞)上的减函数,那么a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查:生产某产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)= x2+x(万元),在年产量不小于8万件时,W(x)=6x+ ﹣38(万元).通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;
(2)写出当产量为多少时利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明f(x)=﹣x2+3在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yii=1,2,…,8)数据作了初步处理,得到下面的散点图及下面一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中 , .
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线vαβu的斜率和截距的最下二乘估计分别为 , .
(1)根据散点图判断,yabx 哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润zx,y的关系为z=0.2yx.根据(2)的结果回答下列问题:
①年宣传费x=49时,年销售量及年利润的预报值时多少?
②年宣传费x为何值时,年利润的预报值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的拆线图.

(1)由拆线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年4月份(即时)的市场占有率;

(2)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:

车型 报废年限

1年

2年

3年

4年

总计

20

35

35

10

100

10

30

40

20

100

经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率.如果你是 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

(参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有

A. B. C. D.

查看答案和解析>>

同步练习册答案