分析 过P作OB的垂线PM,设PM=x,用x表示出tan∠CPM,tan∠BPM,使用差角的正切公式求出tan∠CPB关于x的函数,使用基本不等式得出tan∠CPB的最值及等号成立的条件.
解答
解:过P点作PM⊥OB于M,设OM=x,(0≤x≤10),则BM=22-x,CM=30-x.PM=20+2x.
∴tan∠CPM=$\frac{CM}{PM}$=$\frac{30-x}{20+2x}$,tan∠BPM=$\frac{BM}{PM}=\frac{22-x}{20+2x}$.
∴tan∠CPB=$\frac{tan∠CPM-tan∠BPM}{1+tan∠CPM•tan∠BPM}$=$\frac{\frac{30-x}{20+2x}-\frac{22-x}{20+2x}}{1+\frac{30-x}{20+2x}×\frac{22-x}{20+2x}}$=$\frac{16(x+10)}{5{x}^{2}+28x+1060}$=$\frac{16}{5(x+10)+\frac{1280}{x+10}-72}$≤$\frac{16}{2\sqrt{5×1280}-72}$=$\frac{2}{11}$.
当且仅当5(x+10)=$\frac{1280}{x+10}$即x=6时,tan∠CPB取得最大值,即∠CPB最大.
∴此人所在的点P距水平地面6m时,观看广告画的视角∠BPC最大.
点评 本题考查了解三角形,基本不等式,函数的最值,属于中档题.
科目:高中数学 来源: 题型:填空题
| 网民态度 | 支持 | 反对 | 无所谓 |
| 人数(单位:人) | 8000 | 6000 | 10 000 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a+1}{a-1}$ | B. | $\frac{a-1}{a+1}$ | C. | $\frac{-a-1}{a-1}$ | D. | $\frac{-a+1}{a-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | ±2 | C. | 2 | D. | ±1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{3}$,ln2] | B. | (-ln2,-$\frac{1}{3}$ln6) | C. | (-ln2,-$\frac{1}{3}$ln6] | D. | ($\frac{1}{3}$ln6,ln2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 关于y轴对称 | B. | 关于x轴对称 | C. | 关于直线y=x对称 | D. | 关于原点对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com