分析 (1)连结PF,由CD⊥AD,CD⊥PD得CD⊥平面PAD,故CD⊥PF,又PF⊥AD,故PF⊥平面ABCD,于是平面CEF⊥平面ABCD;
(2)由E是PC的中点得VP-BDE=$\frac{1}{2}$VP-BDC.
解答
解:(1)连结PF,
∵△PAD是正三角形,∴PF⊥AD.
∵AD⊥CD,PD⊥CD,PD?平面PAD,AD?平面PAD,AD∩PD=D,
∴CD⊥平面PAD,∵PF?平面PAD,
∴CD⊥PF.
又∵AD?平面ABCD,CD?平面ABCD,AD∩CD=D,
∴PF⊥平面ABCD,∵PF?平面CEF,
∴平面CEF⊥平面ABCD.
(2)∵△PAD是边长为2的正三角形,四边形ABCD是边长为2的正方形,
∴PF=$\sqrt{3}$,BC=CD=2,
∴VP-BCD=$\frac{1}{3}{S}_{△BCD}•PF$=$\frac{1}{3}×\frac{1}{2}×{2}^{2}×\sqrt{3}$=$\frac{2\sqrt{3}}{3}$.
∵E是PC的中点,
∴VP-BDE=$\frac{1}{2}$VP-BDC=$\frac{\sqrt{3}}{3}$.
点评 本题考查了线面垂直,面面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com