精英家教网 > 高中数学 > 题目详情
16.在边长为2的正△ABC中,已知$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,若$\overrightarrow{AE}$⊥$\overrightarrow{BD}$,则λ=$\frac{4}{5}$.

分析 由已知得$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+λ$\overrightarrow{BC}$,$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$=-$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,由$\overrightarrow{AE}$⊥$\overrightarrow{BD}$,得到$\overrightarrow{AE}$•$\overrightarrow{BD}$=0,由此能求出答案.

解答 解:∵等边三角形ABC的边长为2,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,
∴$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+λ$\overrightarrow{BC}$,
$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$=-$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,
∴$\overrightarrow{AE}$•$\overrightarrow{BD}$=($\overrightarrow{AB}$+λ$\overrightarrow{BC}$)(-$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$)=-|$\overrightarrow{AB}$|2+$\frac{2}{3}$$\overrightarrow{AB}$•$\overrightarrow{AC}$-λ$\overrightarrow{BC}$•$\overrightarrow{AB}$+$\frac{2λ}{3}$•$\overrightarrow{BC}$•$\overrightarrow{AC}$
=-|$\overrightarrow{AB}$|2+$\frac{2}{3}$|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos60°-λ|$\overrightarrow{BC}$|•|$\overrightarrow{AB}$|cos120°+$\frac{2λ}{3}$|$\overrightarrow{BC}$|•|$\overrightarrow{AC}$|cos60°
=-4+$\frac{2}{3}$×2×2×$\frac{1}{2}$+λ×2×2×$\frac{1}{2}$+$\frac{2λ}{3}$×2×2×$\frac{1}{2}$
=-4+$\frac{4}{3}$+2λ+$\frac{4λ}{3}$
=0,
解得λ=$\frac{4}{5}$,
故答案为:$\frac{4}{5}$.

点评 本题考查向量数量积的求法,解题时要认真审题,注意平面向量加法法和向量数量积公式的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是边长为2的正三角形,PD⊥CD,E,F分别为PC,AD的中点.
(1)求证:平面CEF⊥平面ABCD;
(2)求三棱锥P-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个式子中是恒等式的是(  )
A.sin(α+β)=sinα+sinβB.cos(α+β)=cosαcosβ+sinβsinβ
C.tan(α+β)=$\frac{tanα-tanβ}{1-tanαtanβ}$D.sin(α+β)sin(α-β)=sin2α-sin2β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2016=(  )
A.22016-1B.3•21008-3C.3•21008-1D.3•21007-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某公司做了用户对其产品满意度的问卷调查,随机抽取了20名用户的评分,得到如图所示茎叶图,对不低于75的评分,认为用户对产品满意,否则,认为不满意,
(Ⅰ)根据以上资料完成下面的2×2列联表,并估计用户对该公司的产品“满意”的概率;
不满意满意合计
47
合计
(Ⅱ) 根据列联表数据判断:能否在犯错的概率不超过5%的前提下,认为“满意与否”与“性别”有关?
附:
P(K2≥k)0.1000.0500.010
k2.7063.8416.635
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d
(Ⅲ) 该公司为对客户做进一步的调查,从上述对其产品满意的用户中再随机选取2人,求这两人都是男用户或都是女用户的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,已知集合A={-2,-1,0,1,2,3},B={x|x2+x-2≥0},则集合A∩∁UB=(  )
A.{-1,0}B.{-1,0,1}C.{-2,-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,E、F是正方形ABCD的边AB、BC的中点,将△ADE、△CDF、△BEF分别沿DE、DF、EF折起,使A、B、C三点重合于点A′.
(1)求证:A′D⊥EF;
(2)已知正方形ABCD的边长为a,求三棱锥A′-DEF的底面DEF上的高h.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m千米后在B处测得该岛的方位角为北偏东β角,已知该岛周围n千米范围内(包括边界)有暗礁,现该船继续东行.当α与β满足下列(1)(3)(填序号)条件时,该船没有触礁危险.
(1)mcosαcosβ>nsin(α-β)
(2)mcosαcosβ<nsin(α-β)
(3)$\frac{m}{n}>tanα-tanβ$
(4)$\frac{m}{tanα•tanβ}<\frac{n}{tanα-tanβ}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在边长为a的正方体ABCD-A1B1C1D1中,点P从B点开始按路径B→B1→C1→C运动,设从B点列P点的路程为x,V(x)表示空间几何体的体积,其中四校锥P-ABCD的体积为V1(x),剩余空间几何体的体积为V2(x).则f(x)=$\frac{{V}_{1}(x)}{{V}_{2}(x)}$的图象为(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案