精英家教网 > 高中数学 > 题目详情
5.如图,一船在海上自西向东航行,在A处测得某岛M的方位角为北偏东α角,前进m千米后在B处测得该岛的方位角为北偏东β角,已知该岛周围n千米范围内(包括边界)有暗礁,现该船继续东行.当α与β满足下列(1)(3)(填序号)条件时,该船没有触礁危险.
(1)mcosαcosβ>nsin(α-β)
(2)mcosαcosβ<nsin(α-β)
(3)$\frac{m}{n}>tanα-tanβ$
(4)$\frac{m}{tanα•tanβ}<\frac{n}{tanα-tanβ}$.

分析 先确定∠MAB、∠AMB的值,再作MC⊥AB,根据正弦定理可求得BM的关系式,然后根据x=BM•cosβ求出CM的值,只要x>n就没有触礁危险,从而得到答案.

解答 解:由题意可知,∠MAB=$\frac{π}{2}$-α,∠AMB=α-β
过M作MC⊥AB于C,设CM=x,
根据正弦定理可得$\frac{m}{sin(α-β)}=\frac{BM}{sin(\frac{π}{2}-α)}=\frac{BM}{cosα}$,
∴BM=$\frac{mcosα}{sin(α-β)}$,
又因为x=BM•cosβ=$\frac{mcosαcosβ}{sin(α-β)}$>n时没有触礁危险,
即mcosαcosβ>nsin(α-β),(1)正确;
$\frac{m}{n}>\frac{sin(α-β)}{cosαcosβ}$=tanα-tanβ,(3)正确.
故答案为:(1)(3).

点评 本题主要考查正弦定理的应用,考查学生利用数学知识解决实际问题的能力,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在四面体ABCD中,CD=CB,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面ABD⊥平面EFC;
(Ⅱ)当AD=CD=BD=1,且EF⊥CF时,求三棱锥C-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在边长为2的正△ABC中,已知$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,若$\overrightarrow{AE}$⊥$\overrightarrow{BD}$,则λ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.sin10°cos50°+cos10°sin50°的值等于(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知{an}是等比数列,a1=1,a2=2,则a1a2+a2a3+…+anan+1=(  )
A.$\frac{2}{3}$(1-4-nB.$\frac{2}{3}$(1-2-nC.$\frac{2}{3}$(4n-1)D.2n+1-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为$\widehaty$=0.8x-155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为(  )
x196197200203204
y1367m
A.8.3B.8.2C.8.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若方程x2+$\frac{{y}^{2}}{a}$=1(a是常数),则下列结论正确的是(  )
A.任意实数a方程表示椭圆B.存在实数a方程表示椭圆
C.任意实数a方程表示双曲线D.存在实数a方程表示抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=ex(sinx-cosx),则函数f(x)的图象x=$\frac{π}{2}$处的切线的斜率为2e${\;}^{\frac{π}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知θ∈[0,π),集合A={sinθ,1},B={$\frac{1}{2}$,cosθ},A∩B≠∅,那么θ=$\frac{π}{6}$或$\frac{π}{4}$或0或$\frac{5π}{6}$.

查看答案和解析>>

同步练习册答案