分析 先确定∠MAB、∠AMB的值,再作MC⊥AB,根据正弦定理可求得BM的关系式,然后根据x=BM•cosβ求出CM的值,只要x>n就没有触礁危险,从而得到答案.
解答
解:由题意可知,∠MAB=$\frac{π}{2}$-α,∠AMB=α-β
过M作MC⊥AB于C,设CM=x,
根据正弦定理可得$\frac{m}{sin(α-β)}=\frac{BM}{sin(\frac{π}{2}-α)}=\frac{BM}{cosα}$,
∴BM=$\frac{mcosα}{sin(α-β)}$,
又因为x=BM•cosβ=$\frac{mcosαcosβ}{sin(α-β)}$>n时没有触礁危险,
即mcosαcosβ>nsin(α-β),(1)正确;
$\frac{m}{n}>\frac{sin(α-β)}{cosαcosβ}$=tanα-tanβ,(3)正确.
故答案为:(1)(3).
点评 本题主要考查正弦定理的应用,考查学生利用数学知识解决实际问题的能力,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$(1-4-n) | B. | $\frac{2}{3}$(1-2-n) | C. | $\frac{2}{3}$(4n-1) | D. | 2n+1-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 196 | 197 | 200 | 203 | 204 |
| y | 1 | 3 | 6 | 7 | m |
| A. | 8.3 | B. | 8.2 | C. | 8.1 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 任意实数a方程表示椭圆 | B. | 存在实数a方程表示椭圆 | ||
| C. | 任意实数a方程表示双曲线 | D. | 存在实数a方程表示抛物线 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com