分析 (1)由sinB=sin(A+C)=cosAsinC得出sinAcosC=0,于是cosC=0,即C=$\frac{π}{2}$;
(2)利用向量数量级的定义式得出b,代入面积公式得出a,根据勾股定理计算c.
解答 解:(1)在△ABC中,∵sinB=sin(A+C)=sinAcosC+cosAsinC=cosAsinC,
∴sinAcosC=0,
∵A∈(0,π),∴sinA≠0,
∴cosC=0,
∴C=$\frac{π}{2}$.
(2)∵$\overrightarrow{AB}•\overrightarrow{AC}$=bccosA=b2=9,
∴b=3,
∵S=$\frac{1}{2}ab$=$\frac{3a}{2}$=6,
∴a=4.
∴c=$\sqrt{{a}^{2}+{b}^{2}}=5$.
点评 本题考出查了三角函数的恒等变换,平面向量的数量级运算,三角形的面积公式,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cos(-$\frac{π}{10}$)<cos(-$\frac{π}{9}$) | B. | tan$\frac{π}{6}$<tan$\frac{2}{7}$π | C. | sin$\frac{8}{7}$π>sin$\frac{π}{11}$ | D. | cos$\frac{2}{5}$π<cos$\frac{6}{5}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$+1 | B. | $\sqrt{2}$+1 | C. | $\sqrt{5}$+1 | D. | $\sqrt{5}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com