| A. | $\sqrt{3}$+1 | B. | $\sqrt{2}$+1 | C. | $\sqrt{5}$+1 | D. | $\sqrt{5}$-1 |
分析 设|F1F2|=2c,由题意可得|MF1|=c,再由等边三角形的高可得|MF2|=$\sqrt{3}$c,运用双曲线的定义和离心率公式,计算即可得到所求值.
解答 解:设|F1F2|=2c,由题意可得|MF1|=c,
由MF2为等边三角形AF1F2的高,可得:
|MF2|=$\sqrt{3}$c,
由双曲线的定义可得|MF2|-|MF1|=$\sqrt{3}$c-c,
由e=$\frac{2c}{2a}$=$\frac{2c}{\sqrt{3}c-c}$=1+$\sqrt{3}$,
故选:A.
点评 本题考查双曲线的离心率的求法,注意运用等边三角形的性质和双曲线的定义,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{2}$,+∞) | B. | [2$\sqrt{2}$,+∞) | C. | [$\frac{\sqrt{6}}{6}$,+∞) | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\sqrt{13}$ | C. | $\sqrt{14}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com