精英家教网 > 高中数学 > 题目详情
3.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AA1=AB=2,BC=1,$∠BAC=\frac{π}{6}$,D为棱AA1中点,证明异面直线B1C1与CD所成角为$\frac{π}{2}$,并求三棱柱ABC-A1B1C1的体积.

分析 在△ABC中使用正弦定理得出∠ACB=90°,即AC⊥BC,又AA1⊥平面ABC得AA1⊥BC,故BC⊥平面ACC1A1,于是BC⊥CD,由BC∥B1C1得出B1C1⊥CD,利用棱柱的体积公式求出棱柱的体积.

解答 证明:在△ABC中,由正弦定理得$\frac{AB}{sin∠ACB}=\frac{BC}{sin∠BAC}$,即$\frac{2}{sin∠ACB}=\frac{1}{\frac{1}{2}}=2$,
∴sin∠ACB=1,即$∠ACB=\frac{π}{2}$,∴BC⊥AC.
∵AA1⊥平面ABC,BC?平面ABC,
∴BC⊥AA1,又AC?平面ACC1A1,AA1?平面ACC1A1,AA1∩AC=A,
∴BC⊥平面平面ACC1A1,CD?平面ACC1A1
∴BC⊥CD,∵BC∥B1C1
∴B1C1⊥CD,
∴异面直线B1C1与CD所成角为$\frac{π}{2}$.
∵AB=2,BC=1,∠ACB=$\frac{π}{2}$,
∴AC=$\sqrt{3}$.
∴三棱柱ABC-A1B1C1的体积V=S△ABC•AA1=$\frac{1}{2}×1×\sqrt{3}×2$=$\sqrt{3}$.

点评 本题考查了线面垂直的判定,棱柱的结构特征,棱柱的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若sinα=$\frac{1}{\sqrt{5}}$,sinβ=$\frac{1}{\sqrt{10}}$,且α、β∈(0,$\frac{π}{2}$),则α+β是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{3π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知{an}是等比数列,S4=1,S8=4,则a17+a18+a19+a20=81.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列式子正确的是(  )
A.cos(-$\frac{π}{10}$)<cos(-$\frac{π}{9}$)B.tan$\frac{π}{6}$<tan$\frac{2}{7}$πC.sin$\frac{8}{7}$π>sin$\frac{π}{11}$D.cos$\frac{2}{5}$π<cos$\frac{6}{5}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若α为锐角,3sinα=tanα,则cos(α-$\frac{π}{4}$)=$\frac{4+\sqrt{2}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.(普通中学做)如图,已知F1、F2为双曲线的两焦点,等边三角形AF1F2两边的中点M、N在双曲线上,则该双曲线的离心率为(  )
A.$\sqrt{3}$+1B.$\sqrt{2}$+1C.$\sqrt{5}$+1D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.
(Ⅰ)求证:BC⊥A1B;
(Ⅱ)若P是线段AC上一点,$AD=\sqrt{3}$,AB=BC=2,三棱锥A1-PBC的体积为$\frac{{\sqrt{3}}}{3}$,求$\frac{AP}{PC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点(2,1)在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的渐近线上,则C的离心率为(  )
A.$\sqrt{5}$B.2C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等比数列{an}中,若a3,a11是方程2x2-23x+56=0的两个根,则a7=$2\sqrt{7}$.

查看答案和解析>>

同步练习册答案