精英家教网 > 高中数学 > 题目详情
12.已知点(2,1)在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的渐近线上,则C的离心率为(  )
A.$\sqrt{5}$B.2C.$\frac{5}{4}$D.$\frac{\sqrt{5}}{2}$

分析 求出双曲线的渐近线方程,由题意可得a=2b,运用双曲线的离心率公式计算即可得到所求值.

解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的渐近线方程为y=±$\frac{b}{a}$x,
由题意可得$\frac{2b}{a}$=1,即a=2b,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{\sqrt{5}}{2}$a,可得e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故选:D.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程,考查离心率公式的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若α∈($\frac{π}{4}$,$\frac{π}{2}$),则sinα,cosα,tanα的大小关系是(  )
A.sinα>cosα>tanαB.tanα>cosα>sinαC.cosα>tanα>sinαD.tanα>sinα>cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AA1=AB=2,BC=1,$∠BAC=\frac{π}{6}$,D为棱AA1中点,证明异面直线B1C1与CD所成角为$\frac{π}{2}$,并求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线3x2-y2=75上一点P到它的一个焦点的距离等于12,那么点P到它的另一个焦点的距离等于22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与直线y=x交于不同的两点,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{2}$)∪($\sqrt{2}$,+∞)B.($\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线的一条渐近线方程为y=2x,则双曲线的离心率为$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|2a+1≤x<3a+5},B={x|3≤x≤32},若A⊆(A∩B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,BC⊥AC,BC=AC=2,AA1=3D为AC的中点
(1)求证:AB1∥面BDC1
(2)求几何体B1-BC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线y=ex+1在点(0,2)处的切线与直线y=0和x=0围成的三角形面积为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

同步练习册答案