【题目】下列说法:
①分类变量
与
的随机变量
越大,说明“
与
有关系”的可信度越大;
②以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
,
的值分别是
和
;
③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
④若变量
和
满足关系
,且变量
与
正相关,则
与
也正相关.
正确的个数是________.
科目:高中数学 来源: 题型:
【题目】已知圆柱OO1底面半径为1,高为π,ABCD是圆柱的一个轴截面.动点M从点B出发沿着圆柱的侧面到达点D,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面ABCD绕着轴OO1逆时针旋转θ(0<θ<π)后,边B1C1与曲线Γ相交于点P.
![]()
(1)求曲线Γ长度;
(2)当
时,求点C1到平面APB的距离;
(3)是否存在θ,使得二面角D﹣AB﹣P的大小为
?若存在,求出线段BP的长度;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,图中直棱柱
的底面是菱形,其中
.又点
分别在棱
上运动,且满足:
,
.
![]()
(1)求证:
四点共面,并证明
∥平面
.
(2)是否存在点
使得二面角
的余弦值为
?如果存在,求出
的长;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的四个顶点围成的菱形的面积为
,椭圆的一个焦点为
.
(1)求椭圆的方程;
(2)若
,
为椭圆上的两个动点,直线
,
的斜率分别为
,
,当
时,
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
和圆
,倾斜角为45°的直线
过抛物线
的焦点,且
与圆
相切.
(1)求
的值;
(2)动点
在抛物线
的准线上,动点
在
上,若
在
点处的切线
交
轴于点
,设
.求证点
在定直线上,并求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解学生对《3.12植树节》活动节日的相关内容,学校进行了一次10道题的问卷调查,从该校学生中随机抽取50人,统计了每人答对的题数,将统计结果分成
,
,
,
,
五组,得到如下频率分布直方图.
![]()
(1)若答对一题得10分,答错和未答不得分,估计这50名学生成绩的平均分;
(2)若从答对题数在
内的学生中随机抽取2人,求恰有1人答对题数在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为
,曲线C2的直角坐标方程为
.
(1)若直线l与曲线C1交于M、N两点,求线段MN的长度;
(2)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C2上,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com