【题目】已知抛物线
和圆
,倾斜角为45°的直线
过抛物线
的焦点,且
与圆
相切.
(1)求
的值;
(2)动点
在抛物线
的准线上,动点
在
上,若
在
点处的切线
交
轴于点
,设
.求证点
在定直线上,并求该定直线的方程.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
与曲线
,(
为参数).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(1)写出曲线
,
的极坐标方程;
(2)在极坐标系中,已知
与
,
的公共点分别为
,
,
,当
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,其焦距为
,点E为椭圆的上顶点,且
.
(1)求椭圆C的方程;
(2)设圆
的切线l交椭圆C于A,B两点(O为坐标原点),求证
;
(3)在(2)的条件下,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①分类变量
与
的随机变量
越大,说明“
与
有关系”的可信度越大;
②以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
,
的值分别是
和
;
③在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;
④若变量
和
满足关系
,且变量
与
正相关,则
与
也正相关.
正确的个数是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
组别 |
|
|
|
|
|
|
|
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ii)每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
|
|
现市民小王要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:①
;
②若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,过曲线
外的一点
(其中
,
为锐角)作平行于
的直线
与曲线分别交于
.
(Ⅰ) 写出曲线
和直线
的普通方程(以极点为原点,极轴为
轴的正半轴建系);
(Ⅱ)若
成等比数列,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节期间爆发的新型冠状病毒(COVID-19)是新中国成立以来感染人数最多的一次疫情.一个不知道自己已感染但处于潜伏期的甲从疫区回到某市过春节,回到家乡后与朋友乙、丙、丁相聚过,最终乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假设他受甲和受乙感染的概率分别是
和
.丁是受甲、乙或丙感染的,假设他受甲、乙和丙感染的概率分别是
、
和
.在这种假设之下,乙、丙、丁中直接受甲感染的人数为
.
(1)求
的分布列和数学期望;
(2)该市在发现在本地出现新冠病毒感染者后,迅速采取应急措施,其中一项措施是各区必须每天及时,上报新增疑似病例人数.
区上报的连续
天新增疑似病例数据是“总体均值为
,中位数
”,
区上报的连续
天新增疑似病例数据是“总体均值为
,总体方差为
”.设
区和
区连续
天上报新增疑似病例人数分别为
和
,
和
分别表示
区和
区第
天上报新增疑似病例人数(
和
均为非负).记
,
.
①试比较
和
的大小;
②求
和
中较小的那个字母所对应的
个数有多少组?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是( )
A.[3,+∞)B.(3,+∞)C.(﹣∞,3)D.(﹣∞,3]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com