精英家教网 > 高中数学 > 题目详情

【题目】现有一张半径为的圆形铁皮,从中裁剪出一块扇形铁皮(如图阴影部分),并卷成一个深度为的圆锥筒,如图.

1)若所裁剪的扇形铁皮的圆心角为,求圆锥筒的容积;

2)当为多少时,圆锥筒的容积最大?并求出容积的最大值.

【答案】1;(2)当时,圆锥筒的容积的最大值为.

【解析】

1)计算出扇形的弧长,利用扇形的弧长等于圆锥底面圆的周长可求出圆锥底面圆的半径,利用勾股定理计算出圆锥的高,再利用圆锥的体积公式可计算出圆锥的容积;

2)利用勾股定理得出圆锥的底面半径为,可得出,利用圆锥的体积公式计算出圆锥的容积关于的函数,再利用导数可求出的最大值,并求出对应的的值.

设圆锥筒的半径为,容积为.

1)由,得,从而

所以.

答:圆锥筒的容积为

2)因为.

所以,即.

因为,令得,(舍负值),列表如下:

极大值

所以,当时,取极大值即最大值,且的最大值为.

答:当时,圆锥筒的容积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点到左焦点的距离为.直线与椭圆交于不同两点都在轴上方),且.

1)求椭圆的方程;

2)当为椭圆与轴正半轴的交点时,求直线方程;

3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:不等式选讲

已知函数f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的内接等边三角形的面积为(其中为坐标原点).

(1)试求抛物线的方程;

(2)已知点两点在抛物线上,是以点为直角顶点的直角三角形.

①求证:直线恒过定点;

②过点作直线的垂线交于点,试求点的轨迹方程,并说明其轨迹是何种曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.

1)求抛物线的方程;

2)过点作直线交抛物线于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.当点在圆上运动时,线段的中点形成轨迹

1)求轨迹的方程;

2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的内接等边三角形的面积为(其中为坐标原点).

(1)试求抛物线的方程;

(2)已知点两点在抛物线上,是以点为直角顶点的直角三角形.

①求证:直线恒过定点;

②过点作直线的垂线交于点,试求点的轨迹方程,并说明其轨迹是何种曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆),圆),若圆的一条切线与椭圆相交于两点.

(1)当 时,若点都在坐标轴的正半轴上,求椭圆的方程;

(2)若以为直径的圆经过坐标原点,探究是否满足,并说明理由.

查看答案和解析>>

同步练习册答案