精英家教网 > 高中数学 > 题目详情
17.设变量x,y满足越是条件$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,则目标函数z=2x+3y的最小值为(  )
A.6B.10C.12D.18

分析 作出不等式组对应的平面区域,利用直线截距的几何意义,以及数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
设z=2x+3y得y=-$\frac{2}{3}$x+$\frac{1}{3}$z,
平移直线y=-$\frac{2}{3}$x+$\frac{1}{3}$z,由图象可知
当直线y=-$\frac{2}{3}$x+$\frac{1}{3}$z经过点A时,
直线y=-$\frac{2}{3}$x+$\frac{1}{3}$z的截距最小,此时z最小,
由$\left\{\begin{array}{l}{2x+y-6=0}\\{x+2y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
此时zmin=2×2+3×2=10,
故选:B.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也摸出新球的概率为(  )
A.$\frac{3}{5}$B.$\frac{5}{9}$C.$\frac{2}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的标准方程为$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{3}}{2}$,且椭圆上的点到其中一个焦点最大距离为2+$\sqrt{3}$,抛物线C以原点为顶点,以椭圆与x轴正半轴的交点为焦点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知点M(2,0),问:x轴上是否存在一定点P,使得对于抛物线C上的任意两点A和B,当$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)时,恒有点M到直线PA与PB的距离相等?若存在,则求点P的坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在公差大于0的等差数列{an}中,2a7-a13=1,且a1,a3-1,a4+9成等比数列,则数列{(-1)n-1an}的前21项和为(  )
A.21B.-21C.441D.-441

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥P-ABCD的底面是边长为2的正方形,PA⊥平面ABCD,AC交BD于O,H为线段PC上一点.
(1)证明:平面BHD⊥平面PAC;
(2)若OH⊥PC,PC与底面ABCD所成的角为45°,求三棱锥H-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某商场搞促销,规定顾客购物达到一定金额可抽奖,最多有三次机会,每次抽中,可依次分别获得20元、30元、50元奖金,顾客每次抽中后,可以选择带走所得奖金,结束抽奖;也可以选择继续抽奖,若有任何一次没有抽中,则连同前面所得奖金也全部归零,结束抽奖,设顾客甲第一次、第二次、第三次抽中的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选择继续抽奖的概率均为$\frac{1}{2}$,且每次是否抽中互不影响.
(Ⅰ)求顾客甲第一次抽中,但所得奖金为零的概率;
(Ⅱ)设该顾客所得奖金总数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线ax+y+1=0与(a+2)x-3y+1=0互相垂直,则实数a等于(  )
A.1或3B.-1或3C.-3或1D.-3或-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{{\sqrt{3}}}{2}$,以原点为圆心,以椭圆C的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切,过点F2的直线l与椭圆相交于M,N两点.
(1)求椭圆C的方程;
(2)若$\overrightarrow{M{F_1}}=3\overrightarrow{{F_1}N}$,求直线l的方程;
(3)求△F1MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≥0\\ 2x-y-3≤0\\ x-y+1≥0\end{array}\right.$,则x+2y的最小值为(  )
A.2B.3C.$\frac{18}{7}$D.14

查看答案和解析>>

同步练习册答案