科目:高中数学 来源: 题型:
已知数列{an}的前n项和Sn=
,n∈N*.
(1)求数列{an}的通项公式;
(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
设Sn表示数列{an}的前n项和.
(1)若{an}为等差数列,推导Sn的计算公式;
(2)若a1=1,q≠0,且对所有正整数n,有Sn=
,判断{an}是否为等比数列,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
观察下式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,则第n个式子是( )
A.n+(n+1)+(n+2)+…+(2n-1)=n2
B.n+(n+1)+(n+2)+…+(2n-1)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2
查看答案和解析>>
科目:高中数学 来源: 题型:
观察下列算式:
13=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,
……
若某数m3按上述规律展开后,发现等式右边含有“2 013”这个数,则m=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com