已知数列{an}的前n项和Sn=
,n∈N*.
(1)求数列{an}的通项公式;
(2)证明:对任意的n>1,都存在m∈N*,使得a1,an,am成等比数列.
科目:高中数学 来源: 题型:
数列{an}的首项为3,{bn}为等差数列,且bn=an+1-an(n∈N*),若b3=-2,b10=12,则a8=( )
A.0 B.3
C.8 D.11
在递减等差数列{an}中,若a1+a5=0,则Sn取最大值时n等于( )
A.2 B.3
C.4 D.2或3
查看答案和解析>>
科目:高中数学 来源: 题型:
设数列{an}的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.
(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知数列{an}的通项公式为an=25-n,数列{bn}的通项公式为bn=n+k,设cn=
若在数列{cn}中,c5≤cn对任意n∈N*恒成立,则实数k的取值范围是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com