观察下列算式:
13=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,
……
若某数m3按上述规律展开后,发现等式右边含有“2 013”这个数,则m=________.
科目:高中数学 来源: 题型:
设数列{an}的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.
(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知等比数列的各项都为正数,且当n≥3时,a4a2n-4=102n,则数列lga1,2lga2,22lga3,23lga4,…,2n-1lgan,…的前n项和Sn等于( )
A.n·2n B.(n-1)·2n-1-1
C.(n-1)·2n+1 D.2n+1
查看答案和解析>>
科目:高中数学 来源: 题型:
用数学归纳法证明等式1+3+5+…+(2n+1)=(n+1)2(n∈N*)的过程中,第二步假设n=k时等式成立,则当n=k+1时应得到( )
A.1+3+5+…+(2k+1)=k2
B.1+3+5+…+(2k+3)=(k+2)2
C.1+3+5+…+(2k+1)=(k+2)2
D.1+3+5+…+(2k+3)=(k+3)2
查看答案和解析>>
科目:高中数学 来源: 题型:
要制作一个容积为4 m3,高为1 m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com