已知函数
,
。
(1)若对任意的实数a,函数
与
的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a
> 0,对任意x > 0不等式
恒成立,求实数a的取值范围。
(1)a-1(2)![]()
【解析】
试题分析:解:(Ⅰ)
恒成立,
恒成立即
.
方法一:
恒成立,则![]()
![]()
而当
时,![]()
![]()
则
,
,
在
单调递增,
当
,
,
在
单调递减,
则
,符合题意.
即
恒成立,实数
的取值范围为
;![]()
方法二:
,![]()
(1)当
时,
,
,
,
在
单调递减,
当
,
,
在
单调递增,
则
,不符题意;
(2)当
时,
,
①若
,
,
,
,
单调递减;当
,
,
单调递增,则
,矛盾,不符题意;![]()
②若
,
(Ⅰ)若
,
;
;
,
在
单调递减,
在
单调递增,
在
单调递减,
不符合题意;
(Ⅱ)若
时,
,
,
在
单调递减,
,不符合题意.
(Ⅲ)若
,
,
,
,
,
,
,
,
在
单调递减,在
单调递增,在
单调递减,
,与已知矛盾不符题意.
(Ⅳ)若
,
,
,
,
在
单调递增;
当
,
,
在
单调递减,
则
,符合题意;
综上,得
恒成立,实数
的取值范围为![]()
![]()
(Ⅱ) 由(I)知,当
时,有
,
;于是有
,
.![]()
则当
时,有 ![]()
![]()
在上式中,用
代换
,可得
相乘得![]()
![]()
考点:导数的运用
点评:解决的关键是借助于导数的符号来判定函数的单调性,以及函数的最值,进而证明不等式,属于基础题。
科目:高中数学 来源: 题型:
| x |
| 1 |
| n2(n+1)2 |
| 1 |
| 4n |
| 3 |
| 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com