精英家教网 > 高中数学 > 题目详情
(2008•浦东新区一模)已知函数f(x)=
x2+1
-ax
,其中a>0.
(1)若2f(1)=f(-1),求a的值;
(2)当a≥1时,判断函数f(x)在区间[0,+∞)上的单调性;
(3)若函数f(x)在区间[1,+∞)上是增函数,求a的取值范围.
分析:(1)根据2f(1)=f(-1)建立等式关系,解之即可求出a的值;
(2)若a≥1,任取0≤x1<x2,然后通过化简变形判定f(x1)-f(x2)与0的大小,从而确定函数f(x)在[0,+∞)上的单调性;
(3)根据函数f(x)在区间[1,+∞)上是增函数则任取1≤x1<x2,则f(x1)-f(x2)<0,从而求出a的范围.
解答:解:(1)由2f(1)=f(-1),可得:2
2
-2a=
2
+a
3a=
2
a=
2
3
…(4分)
(2)若a≥1,任取0≤x1<x2f(x1)-f(x2)=
x12+1
-ax1-
x
2
2
+1
+ax2=
x12+1
-
x
2
2
+1
-a(x1-x2)

=
x
2
1
-
x
2
2
x
2
1
+1
+
x
2
2
+1
-a(x1-x2)
=(x1-x2)(
x1+x2
x
2
1
+1
+
x
2
2
+1
-a)
…(6分)
因为0≤x1
x
2
1
+1
0<x2
x
2
2
+1
,所以0<
x1+x2
x
2
1
+1
+
x
2
2
+1
<1
…(8分)
因为a≥1,则f(x1)-f(x2)>0,f(x)在[0,+∞)单调递减     …(10分)
(3)任取1≤x1<x2,f(x1)-f(x2)=(x1-x2)(
x1+x2
x
2
1
+1
+
x
2
2
+1
-a)
,因为f(x)单调递增,
所以f(x1)-f(x2)<0,又x1-x2<0,那么
x1+x2
x
2
1
+1
+
x
2
2
+1
-a
>0恒成立 (12分)
2
2
x1+x2
x
2
1
+1
+
x
2
2
+1
<1
,…(14分)   所以0<a≤
2
2
…(16分)
点评:本题主要考查了函数求值以及函数单调性的判定和利用单调性求参数范围等问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•浦东新区二模)若函数f(x)=
2x,(x≥4)
f(x+3),(x<4)
,则f(log23)=
24
24

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区二模)一场特大暴风雪严重损坏了某铁路干线供电设备,抗灾指挥部决定在24小时内完成抢险工程.经测算,工程需要15辆车同时作业24小时才能完成,现有21辆车可供指挥部调配.
(1)若同时投入使用,需要多长时间能够完成工程?(精确到0.1小时)
(2)现只有一辆车可以立即投入施工,其余20辆车需要从各处紧急抽调,每隔40分钟有一辆车可以到达并投入施工,问:24小时内能否完成抢险工程?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•浦东新区二模)不等式组
x+2y≤2
x-y≥1
y≥0
表示的平面区域中点P(x,y)到直线x+3y=9距离的最小值是
2
10
3
2
10
3

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(2008•浦东新区二模)问题:过点M(2,1)作一斜率为1的直线交抛物线y2=2px(p>0)于不同的两点A,B,且点M为AB的中点,求p的值.请阅读某同学的问题解答过程:
解:设A(x1,y1),B(x2,y2),则y12=2px1,y22=2px2,两式相减,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并给出当点M的坐标改为(2,m)(m>0)时,你认为正确的结论:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

同步练习册答案