£¨2008•ÆÖ¶«ÐÂÇø¶þÄ££©ÎÊÌ⣺¹ýµãM£¨2£¬1£©×÷һбÂÊΪ1µÄÖ±Ïß½»Å×ÎïÏßy2=2px£¨p£¾0£©ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒµãMΪABµÄÖе㣬ÇópµÄÖµ£®ÇëÔĶÁijͬѧµÄÎÊÌâ½â´ð¹ý³Ì£º
½â£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy12=2px1£¬y22=2px2£¬Á½Ê½Ïà¼õ£¬µÃ£¨y1-y2£©£¨y1+y2£©=2p£¨x1-x2£©£®ÓÖkAB=
y1-y2x1-x2
=1
£¬y1+y2=2£¬Òò´Ëp=1£®
²¢¸ø³öµ±µãMµÄ×ø±ê¸ÄΪ£¨2£¬m£©£¨m£¾0£©Ê±£¬ÄãÈÏΪÕýÈ·µÄ½áÂÛ£º
p=m£¨0£¼m£¼4£©
p=m£¨0£¼m£¼4£©
£®
·ÖÎö£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy12=2px1£¬y22=2px2£¬Á½Ê½Ïà¼õ£¬µÃ£¨y1-y2£©£¨y1+y2£©=2p£¨x1-x2£©£®ÓÖkAB=
y1-y2
x1-x2
=1
£¬y1+y2=2mËùÒÔp=m£¬½«Ö±Ïß·½³ÌÓëÅ×ÎïÏߵķ½³ÌÁªÁ¢£¬Åбðʽ´óÓÚ0Çó³ömµÄ·¶Î§£®
½â´ð£º½â£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòy12=2px1£¬y22=2px2£¬
Á½Ê½Ïà¼õ£¬µÃ£¨y1-y2£©£¨y1+y2£©=2p£¨x1-x2£©£®
ÓÖkAB=
y1-y2
x1-x2
=1
£¬y1+y2=2m
ËùÒÔ1=
2p
2m

ËùÒÔp=m
ÒòΪ
y2=2px
y-m=x-2
ÏûÈ¥xµÃ
y2-2py+2pm-4p=0
¼´y2-2my+2m2-4m=0
¡÷=4m2-4£¨2m2-4m£©£¾0
½âµÃ0£¼m£¼4
¹Ê´ð°¸Îª£ºp=m£¨0£¼m£¼4£©
µãÆÀ£º½â¾öÖ±ÏßÓëԲ׶ÇúÏßÏཻÓйØÏÒÖеãµÄÎÊÌ⣬³£ÀûÓõã²î·¨À´½â¾ö£¬µ«×¢ÒâÐèÒª½«Ö±Ïߵķ½³ÌÓëԲ׶ÇúÏߵķ½³ÌÁªÁ¢£¬Åбðʽ´óÓÚ0£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÆÖ¶«ÐÂÇø¶þÄ££©Èôº¯Êýf£¨x£©=
2x£¬(x¡Ý4)
f(x+3)£¬(x£¼4)
£¬Ôòf£¨log23£©=
24
24
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÆÖ¶«ÐÂÇø¶þÄ££©Ò»³¡Ìش󱩷çÑ©ÑÏÖØËð»µÁËijÌú·¸ÉÏß¹©µçÉ豸£¬¿¹ÔÖÖ¸»Ó²¿¾ö¶¨ÔÚ24СʱÄÚÍê³ÉÇÀÏÕ¹¤³Ì£®¾­²âË㣬¹¤³ÌÐèÒª15Á¾³µÍ¬Ê±×÷Òµ24Сʱ²ÅÄÜÍê³É£¬ÏÖÓÐ21Á¾³µ¿É¹©Ö¸»Ó²¿µ÷Å䣮
£¨1£©ÈôͬʱͶÈëʹÓã¬ÐèÒª¶à³¤Ê±¼äÄܹ»Íê³É¹¤³Ì£¿£¨¾«È·µ½0.1Сʱ£©
£¨2£©ÏÖÖ»ÓÐÒ»Á¾³µ¿ÉÒÔÁ¢¼´Í¶ÈëÊ©¹¤£¬ÆäÓà20Á¾³µÐèÒª´Ó¸÷´¦½ô¼±³éµ÷£¬Ã¿¸ô40·ÖÖÓÓÐÒ»Á¾³µ¿ÉÒÔµ½´ï²¢Í¶ÈëÊ©¹¤£¬ÎÊ£º24СʱÄÚÄÜ·ñÍê³ÉÇÀÏÕ¹¤³Ì£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÆÖ¶«ÐÂÇø¶þÄ££©²»µÈʽ×é
x+2y¡Ü2
x-y¡Ý1
y¡Ý0
±íʾµÄƽÃæÇøÓòÖеãP£¨x£¬y£©µ½Ö±Ïßx+3y=9¾àÀëµÄ×îСֵÊÇ
2
10
3
2
10
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2008•ÆÖ¶«ÐÂÇøһģ£©ÒÑÖªº¯Êýf(x)=
x2+1
-ax
£¬ÆäÖÐa£¾0£®
£¨1£©Èô2f£¨1£©=f£¨-1£©£¬ÇóaµÄÖµ£»
£¨2£©µ±a¡Ý1ʱ£¬ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä[0£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£»
£¨3£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸