精英家教网 > 高中数学 > 题目详情
1.在边长为1的等边△ABC中,设$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,则$\overrightarrow{a}$•$\overrightarrow{b}$-$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 利用向量数量积定义即可得出.

解答 解:如图所示,
$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{BC}•\overrightarrow{CA}$=-1×1×cos60°=-$\frac{1}{2}$,
同理可得:$\overrightarrow{b}•\overrightarrow{c}$=-$\frac{1}{2}$=$\overrightarrow{c}•\overrightarrow{a}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$-$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$=-$\frac{1}{2}$.
故选:B.

点评 本题考查了向量数量积定义的应用、向量的夹角,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.一个球从100米高处自由落下,每次着地后又跳回至前一次高度的一半落下,当它第10次着地时,共经过的路程为 (结果精确到1米)(  )
A.199米B.200米C.300米D.100米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量为5的一个样本,若编号为42的产品在样本中,则该样本中产品的最小编号为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若(sinA+sinB):(sinA+sinC):(sinB+sinC)=4:5:6,且该三角形面积为$15\sqrt{3}$,则△ABC的最大边长等于14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题p:x2-2x-3<0,命题q:x2-ax-2a2<0,若命题p是命题q的必要不充分条件,则实数a的取值范围为$[-\frac{1}{2},1]$,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用函数极限的定义证明下列极限:
(1)$\underset{lim}{x→3}$x2=9;
(2)$\underset{lim}{x→1}\frac{{x}^{3}-1}{{x}^{2}-1}=\frac{3}{2}$;
(3)$\underset{lim}{x→0}$$\frac{1-2{x}^{2}}{1+{x}^{2}}$=1;
(4)$\underset{lim}{x→∞}$$\frac{3{x}^{2}+x}{{x}^{2}+1}$=3;
(5)$\underset{lim}{x→0}$$\frac{1}{{x}^{2}+x}$=∞;
(6)$\underset{lim}{x→{x}_{0}}$$\sqrt{x}=\sqrt{{x}_{0}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若定义集合A的独立和如下:对于非空子集A,将A中每个元素k,都乘以(-1)k,再求和.如A={1,3,6},可求得其独立和为(-1)•1+(-3)3•3+(-1)6•6=2已知集合M={x|1≤x≤10,x∈N},则对M的所有非空子集的独立和的总和等于2560.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)是定义在(0,+∞)上的函数,对x,y∈(0,+∞)恒有f(x•y)=f(x)•f(y),f(x)>0,且当x>1时,f(x)>1.求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算2013${\;}^{-lo{g}_{2013}2014}$的结果为(  )
A.-2014B.$\frac{1}{2014}$C.2014D.-$\frac{1}{2014}$

查看答案和解析>>

同步练习册答案