精英家教网 > 高中数学 > 题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c,向量数学公式=(sinA,b+c),数学公式=(a-c,sinC-sinB),满足数学公式数学公式,则角B=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:由题意可得 =0,应用正弦定理、余弦定理 可得cosB==,又 0<B<π,可得
B=
解答:由题意可得 =(a-c)sinA+(b+c)(sinC-sinB)=2r[sin2A-sinAsinC]
+2r[sinB sinC-sin2B+sin2C-sinCsinB]=2r[sin2A+sin2C-sin2B-sinAsinC]=0.
∴sin2A+sin2C-sin2B=sinAsinC,∴a2+c2-b2=ac.
∴cosB==,又 0<B<π,B=
故选 B.
点评:本题考查两个向量的数量积公式的应用,两个向量垂直的性质,正弦定理、余弦定理的应用,得到 cosB==,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案